Skip to main content

Advertisement

Log in

m-TAG: a PCR-based genomic integration method to visualize the localization of specific endogenous mRNAs in vivo in yeast

  • Protocol
  • Published:

From Nature Protocols

View current issue Submit your manuscript

Abstract

This protocol describes m-TAG, a novel method for the visualization of endogenously expressed mRNAs in live yeast (Saccharomyces cerevisiae). First, a gene of interest is tagged with multiple binding sites for the RNA-binding MS2 coat protein (MS2-CP), using a PCR-based genomic-tagging strategy and homologous recombination. Next, MS2-CP fused to GFP(x3) is expressed in cells; binding of this fusion protein to the tagged mRNA yields an RNA granule that can be visualized by fluorescence microscopy. While existing methods necessitate cell fixation (for in situ hybridization) or the detection of exogenously expressed mRNAs (from plasmids), or give transient signals (i.e., with fluorescent hybridization probes), m-TAG allows for the robust and stable visualization of endogenously expressed mRNAs in vivo and facilitates the study of mRNA dynamics under different growth conditions. The m-TAG procedure is simple, easy to perform and takes <3 weeks to yield cultured yeast strains for mRNA visualization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: m-TAG, a method for visualizing endogenous mRNAs in living yeast cells.
Figure 2: The m-TAG gene-tagging strategy: primers and protocol.
Figure 3: Visualization of endogenous mRNAs in vivo.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Bashirullah, A., Cooperstock, R.L. & Lipshitz, H.D. RNA localization in development. Annu. Rev. Biochem. 67, 335–394 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Kloc, M., Zearfoss, N.R. & Etkin, L.D. Mechanisms of subcellular mRNA localization. Cell 108, 533–544 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Gonsalvez, G.B., Urbinati, C.R. & Long, R.M. RNA localization in yeast: moving towards a mechanism. Biol. Cell. 97, 75–86 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Jansen, R.P. mRNA localization: message on the move. Nat. Rev. Mol. Cell Biol. 2, 247–256 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Tekotte, H. & Davis, I. Intracellular mRNA localization: motors move messages. Trends Genet. 18, 636–642 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Zenklusen, D., Larson, D.R. & Singer, R.H. Single-RNA counting reveals alternative modes of gene expression in yeast. Nat. Struct. Mol. Biol. 15, 1263–1271 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Beach, D.L., Salmon, E.D. & Bloom, K. Localization and anchoring of mRNA in budding yeast. Curr. Biol. 9, 569–578 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Bertrand, E. et al. Localization of ASH1 mRNA particles in living yeast. Mol. Cell 2, 437–445 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Ozawa, T., Natori, Y., Sato, M. & Umezawa, Y. Imaging dynamics of endogenous mitochondrial RNA in single living cells. Nat. Methods 4, 413–419 (2007).

    CAS  PubMed  Google Scholar 

  10. Valencia-Burton, M., McCullough, R.M., Cantor, C.R. & Broude, N.E. RNA visualization in live bacterial cells using fluorescent protein complementation. Nat. Methods 4, 421–427 (2007).

    CAS  PubMed  Google Scholar 

  11. Bratu, D.P., Cha, B.J., Mhlanga, M.M., Kramer, F.R. & Tyagi, S. Visualizing the distribution and transport of mRNAs in living cells. Proc. Natl. Acad. Sci. USA 100, 13308–13313 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Abe, H. & Kool, E.T. Flow cytometric detection of specific RNAs in native human cells with quenched autoligating FRET probes. Proc. Natl. Acad. Sci. USA 103, 263–268 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Haim, L., Zipor, G., Aronov, S. & Gerst, J.E. A genomic integration method to visualize localization of endogenous mRNAs in living yeast. Nat. Methods 4, 409–412 (2007).

    CAS  PubMed  Google Scholar 

  14. Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Ghaemmaghami, S. et al. Global analysis of protein expression in yeast. Nature 425, 737–741 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Huh, W.K. et al. Global analysis of protein localization in budding yeast. Nature 425, 686–691 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Rose, M.D., Winston, F. & Hieter, P. Methods in Yeast Genetics, A Laboratory Course Manual (Cold Spring Harbor Press, Cold Spring Harbor, New York, 1990).

    Google Scholar 

  18. Brickner, D.G. et al. H2A.Z-mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state. PLoS Biol. 5, e81 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Straight, A.F., Belmont, A.S., Robinett, C.C. & Murray, A.W. GFP tagging of budding yeast chromosomes reveals that protein–protein interactions can mediate sister chromatid cohesion. Curr. Biol. 6, 1599–1608 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Kahn Center for Systems Biology and Y. Leon Benoziyo Institute for Molecular Medicine, Weizmann Institute of Science, Israel, and the Minerva Foundation, Germany. J.E.G. holds the Henry Kaplan Chair in Cancer Research.

Author information

Authors and Affiliations

Authors

Contributions

Text and figure preparation was done by L.H.-V. and J.E.G.

Corresponding author

Correspondence to Jeffrey E Gerst.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haim-Vilmovsky, L., Gerst, J. m-TAG: a PCR-based genomic integration method to visualize the localization of specific endogenous mRNAs in vivo in yeast. Nat Protoc 4, 1274–1284 (2009). https://doi.org/10.1038/nprot.2009.115

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.115

  • Springer Nature Limited

This article is cited by

Navigation