Skip to main content
Log in

Direct detection of N−H⋯N hydrogen bonds in biomolecules by NMR spectroscopy

  • Protocol
  • Published:

From Nature Protocols

View current issue Submit your manuscript

Abstract

A nuclear magnetic resonance (NMR) experiment is described for the direct detection of N–H⋯N hydrogen bonds (H-bonds) in 15N isotope-labeled biomolecules. This quantitative HNN-COSY (correlation spectroscopy) experiment detects and quantifies electron-mediated scalar couplings across the H-bond (H-bond scalar couplings), which connect magnetically active 15N nuclei of the H-bond donor and acceptor. Detectable H-bonds comprise the imino H-bonds in canonical Watson–Crick base pairs, many H-bonds in unusual nucleic acid base pairs and H-bonds between protein backbone or side-chain N–H donor and N acceptor moieties. Unlike other NMR observables, which provide only indirect evidence of the presence of H-bonds, the H-bond scalar couplings identify all partners of the H-bond, the donor, the donor proton and the acceptor in a single experiment. The size of the scalar couplings can be related to H-bond geometries and as a time average to H-bond dynamics. The time required to detect the H-bonds is typically less than 1 d at millimolar concentrations for samples of molecular weight ≈25 kDa. A 15N/13C-labeled potato spindle tuber viroid T1 RNA domain is used as an example to illustrate this procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Watson–Crick RNA base pairs indicating the N–H⋯N H-bond that can be detected by h2JNN correlations.
Figure 2: Basic HNN-COSY pulse sequence.
Figure 3: 2D HNN-COSY spectrum recorded on the PSTVd T1 RNA domain, mutant U18C/A344G (see ref. 30).

Similar content being viewed by others

References

  1. Jeffrey, G.A. & Saenger, W. Hydrogen Bonding in Biological Structures (Springer, New York, 1991).

    Book  Google Scholar 

  2. Shu, F., Ramakrishnan, V. & Schoenborn, B.P. Enhanced visibility of hydrogen atoms by neutron crystallography on fully deuterated myoglobin. Proc. Natl. Acad. Sci. USA 97, 3872–3877 (2000).

    Article  CAS  Google Scholar 

  3. Addlagatta, A., Krzywda, S., Czapinska, H., Otlewski, J. & Jaskolski, M. Ultrahigh-resolution structure of a BPTI mutant. Acta Crystallogr. D 57, 649–663 (2001).

    Article  CAS  Google Scholar 

  4. Jelsch, C. et al. Accurate protein crystallography at ultra-high resolution: valence electron distribution in crambin. Proc. Natl. Acad. Sci. USA 97, 3171–3176 (2000).

    Article  CAS  Google Scholar 

  5. Gerwert, K. Molecular reaction mechanisms of proteins monitored by time-resolved FTIR-spectroscopy. Biol Chem 380, 931–935 (1999).

    Article  CAS  Google Scholar 

  6. Becker, E.D. Hydrogen bonding. in Encyclopedia of Nuclear Magnetic Resonance, Vol. 4 (eds. Grant, D.M. & Harris, R.K.) 2409–2415 (John Wiley, New York, 1996).

    Google Scholar 

  7. Dingley, A.J. & Grzesiek, S. Direct observation of hydrogen bonds in nucleic acid base pairs by internucleotide 2JNN couplings. J. Am. Chem. Soc. 120, 8293–8297 (1998).

    Article  CAS  Google Scholar 

  8. Pervushin, K. et al. NMR scalar couplings across Watson–Crick base pair hydrogen bonds in DNA observed by transverse relaxation-optimized spectroscopy. Proc. Natl. Acad. Sci. USA 95, 14147–14151 (1998).

    Article  CAS  Google Scholar 

  9. Cordier, F. & Grzesiek, S. Direct observation of hydrogen bonds in proteins by inter-residue 3hJNC′ scalar couplings. J. Am. Chem. Soc. 121, 1601–1602 (1999).

    Article  CAS  Google Scholar 

  10. Cornilescu, G., Hu, J.-S. & Bax, A. Identification of the hydrogen bonding network in a protein by scalar couplings. J. Am. Chem. Soc. 121, 2949–2950 (1999).

    Article  CAS  Google Scholar 

  11. Shenderovich, I.G. et al. Nuclear magnetic resonance of hydrogen bonded clusters between F- and (HF)n: experiment and theory. Ber. Bunsen-Ges. Phys. Chem. 102, 422–428 (1998).

    Article  CAS  Google Scholar 

  12. Golubev, N.S., Shenderovich, I.G., Smirnov, S.N., Denisov, G.S. & Limbach, H.-H. Nuclear scalar spin–spin coupling reveals novel properties of low-barrier hydrogen bonds in a polar environment. Chem. Eur. J. 5, 492–497 (1999).

    Article  CAS  Google Scholar 

  13. Blake, P.R. et al. Quantitative measurement of small through-hydrogen-bond and 'through-space' 1H-113Cd and 1H-199Hg J couplings in metal-substituted rubredoxin from Pyrococcus furiosus. J. Biomol. NMR 2, 527–533 (1992).

    Article  CAS  Google Scholar 

  14. Crabtree, R.H., Siegbahn, P.E.M., Eisenstein, O., Rheingold, A.L. & Koetzle, T.F. A new intermolecular interaction: unconventional hydrogen bonds with element-hydride bonds as proton acceptor. Acc. Chem. Res. 29, 348–354 (1996).

    Article  CAS  Google Scholar 

  15. Cordier, F., Nisius, L., Dingley, A.J. & Grzesiek, S. Direct detection of N−H⋯O=C hydrogen bonds in biomolecules by NMR spectroscopy. Nat. Protoc. 3, 235–241.

  16. Dingley, A.J., Cordier, F. & Grzesiek, S. An introduction to hydrogen bond scalar couplings. Concepts Magn. Reson. 13, 103–127 (2001).

    Article  CAS  Google Scholar 

  17. Grzesiek, S., Cordier, F. & Dingley, A.J. Scalar couplings across hydrogen bonds. Methods Enzymol. 338, 111–133 (2001).

    Article  CAS  Google Scholar 

  18. Grzesiek, S., Cordier, F. & Dingley, A.J. Hydrogen bond scalar couplings—a new tool in biomolecular NMR. in Biological Magnetic Resonance, Vol. 20 (eds. Krishna, N.R. & Berliner, L.J.) 255–283 (Kluwer Academic/Plenum, New York, 2003).

    Google Scholar 

  19. Grzesiek, S., Cordier, F., Jaravine, V.A. & Barfield, M. Insights into biomolecular hydrogen bonds from hydrogen bond scalar couplings. Prog. Nucl. Magn. Reson. Spectrosc. 45, 275–300 (2004).

    Article  CAS  Google Scholar 

  20. Barfield, M. Structural dependencies of inter-residue scalar coupling 3hJNC, and donor H-1 chemical shifts in the hydrogen bonding regions of proteins. J. Am. Chem. Soc. 124, 4158–4168 (2002).

    Article  CAS  Google Scholar 

  21. Cornilescu, G. et al. Correlation between 3hJNC′ and hydrogen bond length in proteins. J. Am. Chem. Soc. 121, 6275–6279 (1999).

    Article  CAS  Google Scholar 

  22. Majumdar, A., Kettani, A. & Skripkin, E. Observation and measurement of internucleotide 2JNN coupling constants between 15N nuclei with widely separated chemical shifts. J. Biomol. NMR 14, 67–70 (1999).

    Article  CAS  Google Scholar 

  23. Dingley, A.J., Masse, J.E., Feigon, J. & Grzesiek, S. Characterization of the hydrogen bond network in guanosine quartets by internucleotide 3hJNC′ and 2hJNN scalar couplings. J. Biomol. NMR 16, 279–289 (2000).

    Article  CAS  Google Scholar 

  24. Hennig, M. & Geierstanger, B.H. Direct detection of a histidine–histidine side-chain hydrogen bond important for folding of apomyoglobin. J. Am. Chem. Soc. 121, 5123–5126 (1999).

    Article  CAS  Google Scholar 

  25. Majumdar, A. & Patel, D.J. Identifying hydrogen bond alignments in multistranded DNA architectures by NMR. Acc. Chem. Res. 35, 1–11 (2002).

    Article  CAS  Google Scholar 

  26. Al-Hashimi, H.M., Gorin, A., Majumdar, A., Gosser, Y. & Patel, D.J. Towards structural genomics of RNA: rapid NMR resonance assignment and simultaneous RNA tertiary structure determination using residual dipolar couplings. J. Mol. Biol. 318, 637–649 (2002).

    Article  CAS  Google Scholar 

  27. Kojima, C., Ono, A. & Kainosho, M. Studies of physicochemical properties of N−H⋯N hydrogen bonds in DNA, using selective 15N-labeling and direct 15N 1D NMR. J. Biomol. NMR 18, 269–277 (2000).

    Article  CAS  Google Scholar 

  28. Bytchenkoff, D., Chiarparin, E., Früh, D., Rüdisser, S. & Bodenhausen, G. Temperature dependence of internucleotide nitrogen–nitrogen scalar couplings in RNA. Magn. Reson. Chem. 40, 377–379 (2002).

    Article  CAS  Google Scholar 

  29. Dingley, A.J., Peterson, R.D., Grzesiek, S. & Feigon, J. Characterization of the cation and temperature dependence of DNA quadruplex hydrogen bond properties using high-resolution NMR. J. Am. Chem. Soc. 127, 14466–72 (2005).

    Article  CAS  Google Scholar 

  30. Dingley, A.J., Steger, G., Esters, B., Riesner, D. & Grzesiek, S. Structural characterization of the 69-nucleotide potato spindle tuber viroid left-terminal domain by NMR and thermodynamic analysis. J. Mol. Biol. 334, 751–767 (2003).

    Article  CAS  Google Scholar 

  31. Delaglio, F. et al. NMRPipe—a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

  32. Barfield, M., Dingley, A.J., Feigon, J. & Grzesiek, S. A DFT study of the inter-residue dependencies of scalar J- coupling and magnetic shielding in the hydrogen-bonding regions of a DNA triplex. J. Am. Chem. Soc. 123, 4014–4022 (2001).

    Article  CAS  Google Scholar 

  33. Schwalbe, H., Schmidt, P. & Griesinger, C. Coupling constants determined by ECOSY. in Encyclopedia of Nuclear Magnetic Resonance, Vol. 3 (eds. Grant, D.M. & Harris, R.K.) 1473–1489 (John Wiley, New York, 1996).

    Google Scholar 

  34. Batey, R.T., Inada, M., Kujawinski, E., Puglisi, J.D. & Williamson, J.R. Preparation of isotopically labeled ribonucleotides for multidimensional NMR spectroscopy of RNA. Nucleic Acids Res. 20, 4515–4523 (1992).

    Article  CAS  Google Scholar 

  35. Batey, R.T., Battiste, J.L. & Williamson, J.R. Preparation of isotopically enriched RNAs for heteronuclear NMR. Methods Enzymol. 261, 300–322 (1995).

    Article  CAS  Google Scholar 

  36. Nikonowicz, E.P. et al. Preparation of 13C and 15N labelled RNAs for heteronuclear multi-dimensional NMR studies. Nucleic Acids Res. 20, 4507–4513 (1992).

    Article  CAS  Google Scholar 

  37. Louis, J.M., Martin, R.G., Clore, G.M. & Gronenborn, A.M. Preparation of uniformly isotope-labeled DNA oligonucleotides for NMR spectroscopy. J. Biol. Chem. 273, 2374–2378 (1998).

    Article  CAS  Google Scholar 

  38. Rene, B., Masliah, G., Zargarian, L., Mauffret, O. & Fermandjian, S. General method of preparation of uniformly 13C, 15N-labeled DNA fragments for NMR analysis of DNA structures. J. Biomol. NMR 36, 137–146 (2006).

    Article  CAS  Google Scholar 

  39. Messerle, B.A., Wider, G., Otting, G., Weber, C. & Wuthrich, K. Solvent suppression using a spin lock in 2D and 3D NMR-spectroscopy with H2O solutions. J. Magn. Reson. 85, 608–613 (1989).

    CAS  Google Scholar 

  40. Sklenar, V. & Bax, A. Spin-echo water suppression for the generation of pure-phase two-dimensional NMR-spectra. J. Magn. Reson. 74, 469–479 (1987).

    CAS  Google Scholar 

  41. Zhu, G., Torchia, D. & Bax, A. Discrete Fourier transformation of NMR signals. The relationship between sampling delay time and spectral baseline. J. Magn. Reson. A 105, 219–222 (1993).

    Article  CAS  Google Scholar 

  42. Bax, A., Ikura, M., Kay, L.E. & Zhu, G. Removal of F1 baseline distortion and optimization of folding in multidimensional NMR spectra. J. Magn. Reson. 91, 174–178 (1991).

    CAS  Google Scholar 

  43. Hu, J., Facelli, J., Alderman, D., Pugmire, R. & Grant, D. 15N chemical shift tensors in nucleic acid bases. J. Am. Chem. Soc. 120, 9863–9869 (1998).

    Article  CAS  Google Scholar 

  44. Majumdar, A., Kettani, A., Skripkin, E. & Patel, D.J. Pulse sequences for detection of NH2⋯N hydrogen bonds in sheared G·A mismatches via remote, non-exchangeable protons. J. Biomol. NMR 19, 103–113 (2001).

    Article  CAS  Google Scholar 

  45. Majumdar, A., Kettani, A., Skripkin, E. & Patel, D.J. Observation of internucleotide N−H⋯N hydrogen bonds in the absence of directly detectable protons. J. Biomol. NMR 15, 207–211 (1999).

    Article  CAS  Google Scholar 

  46. Hennig, M. & Williamson, J.R. Detection of N−H⋯N hydrogen bonding in RNA via scalar couplings in the absence of observable imino proton resonances. Nucleic Acids Res. 28, 1585–1593 (2000).

    Article  CAS  Google Scholar 

  47. Luy, B. & Marino, J.P. Direct evidence for Watson–Crick base pairs in a dynamic region of RNA structure. J. Am. Chem. Soc. 122, 8095–8096 (2000).

    Article  CAS  Google Scholar 

  48. Dingley, A.J. et al. Internucleotide scalar couplings across hydrogen bonds in Watson–Crick and Hoogsteen base pairs of a DNA triplex. J. Am. Chem. Soc. 121, 6019–6027 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge our collaborators Professor Barfield, Professor Feigon and Dr. Bax for their continued support and enthusiasm. This work was supported by SNF Grant 31-109712 (S.G.) and by a stipend of the Boehringer Ingelheim Fonds (L.N.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Grzesiek.

Supplementary information

Supplementary Note 1

Bruker two-dimensional HNN-COSY pulse sequence code (DOC 74 kb)

Supplementary Note 2

Conversion and NMRPipe processing script for 2D HNN-COSY data recorded on a Bruker NMR spectrometer (DOC 29 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dingley, A., Nisius, L., Cordier, F. et al. Direct detection of N−H⋯N hydrogen bonds in biomolecules by NMR spectroscopy. Nat Protoc 3, 242–248 (2008). https://doi.org/10.1038/nprot.2007.497

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.497

  • Springer Nature Limited

This article is cited by

Navigation