Skip to main content
Log in

Optical simulations of gravitational effects in the Newton–Schrödinger system

  • Article
  • Published:

From Nature Physics

View current issue Submit your manuscript

Abstract

Some predictions of Einstein’s theory of general relativity (GR) still elude observation, hence analogous systems, such as optical set-ups, have been suggested as platforms for emulating GR phenomena. GR is inherently nonlinear: for example, the curvature of space is induced by masses whose dynamics is also affected by the curved space they themselves induce. But, thus far all GR emulation experiments with optical systems have reproduced only linear dynamics. Here, we study gravitational effects with optical wavepackets under a long-range nonlocal thermal nonlinearity. This system is mathematically equivalent to the Newton–Schrödinger model proposed to describe the gravitational self-interaction of quantum wavepackets. We emulate gravitational phenomena by creating interactions between a wavepacket and the gravitational potential of a massive star, observing gravitational lensing, tidal forces and gravitational redshift and blueshift. These wavepackets interact in the curved space they themselves induce, exhibiting complex nonlinear dynamics arising from the interplay between diffraction, interference and the emulated gravitational effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Experimental settings and results.
Figure 2: Simulations and experiments showing the trajectories of the beam accelerating away from the ‘star’ and the deformation of its structure, unravelling the effect of tidal forces.
Figure 3: Using the inhomogeneous geodesic equation to model the trajectories of the beam accelerating away from the ‘star’ and the tidal forces acting on it.
Figure 4: Experimental observations of redshift and blueshift.

Similar content being viewed by others

References

  1. Einstein, A. Die Grundlage der allgemeinen Relativitätstheorie. Ann. Phys. 354, 769–822 (1916).

    Article  Google Scholar 

  2. Unruh, W. G. Experimental black-hole evaporation? Phys. Rev. Lett. 46, 1351–1353 (1981).

    Article  ADS  Google Scholar 

  3. Lahav, O. et al. Realization of a sonic black hole analog in a Bose–Einstein condensate. Phys. Rev. Lett. 105, 240401 (2010).

    Article  ADS  Google Scholar 

  4. Weinfurtner, S., Tedford, E. W., Penrice, M. C. J., Unruh, W. G. & Lawrence, G. A. Measurement of stimulated Hawking emission in an analogue system. Phys. Rev. Lett. 106, 021302 (2011).

    Article  ADS  Google Scholar 

  5. Leonhardt, U. & Piwnicki, P. Optics of nonuniformly moving media. Phys. Rev. A 60, 4301–4312 (1999).

    Article  ADS  Google Scholar 

  6. Leonhardt, U. & Piwnicki, P. Relativistic effects of light in moving media with extremely low group velocity. Phys. Rev. Lett. 84, 822–825 (2000).

    Article  ADS  Google Scholar 

  7. Smolyaninov, I. I. Surface plasmon toy model of a rotating black hole. New J. Phys. 5, 147 (2003).

    Article  ADS  Google Scholar 

  8. Philbin, T. G. et al. Fiber-optical analog of the event horizon. Science 319, 1367–1370 (2008).

    Article  ADS  Google Scholar 

  9. Narimanov, E. E. & Kildishev, A. V. Optical black hole: Broadband omnidirectional light absorber. Appl. Phys. Lett. 95, 041106 (2009).

    Article  ADS  Google Scholar 

  10. Genov, D. A., Zhang, S. & Zhang, X. Mimicking celestial mechanics in metamaterials. Nature Phys. 5, 687–692 (2009).

    Article  ADS  Google Scholar 

  11. Sheng, C., Liu, H., Wang, Y., Zhu, S. N. & Genov, D. A. Trapping light by mimicking gravitational lensing. Nature Photon. 7, 902–906 (2013).

    Article  ADS  Google Scholar 

  12. Batz, S. & Peschel, U. Linear and nonlinear optics in curved space. Phys. Rev. A 78, 043821 (2008).

    Article  ADS  Google Scholar 

  13. Schultheiss, V. H. et al. Optics in curved space. Phys. Rev. Lett. 105, 143901 (2010).

    Article  ADS  Google Scholar 

  14. Bekenstein, R., Nemirovsky, J., Kaminer, I. & Segev, M. Shape-preserving accelerating electromagnetic wave packets in curved space. Phys. Rev. X 4, 011038 (2014).

    Google Scholar 

  15. Gorbach, A. V. & Skryabin, D. V. Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres. Nature Photon. 1, 653–657 (2007).

    Article  ADS  Google Scholar 

  16. Batz, S. & Peschel, U. Solitons in curved space of constant curvature. Phys. Rev. A 81, 053806 (2010).

    Article  ADS  Google Scholar 

  17. Smolyaninov, I. I. Analog of gravitational force in hyperbolic metamaterials. Phys. Rev. A 88, 033843 (2013).

    Article  ADS  Google Scholar 

  18. Engheta, N. & Ziolkowski, R. W. Metamaterials: Physics and Engineering Explorations (John Wiley, 2006).

    Book  Google Scholar 

  19. Shalaev, V. M. Optical negative-index metamaterials. Nature Photon. 1, 41–48 (2007).

    Article  ADS  Google Scholar 

  20. Weinberg, S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (John Wiley, 1972).

    Google Scholar 

  21. Jacobson, T. Thermodynamics of spacetime: The Einstein equation of state. Phys. Rev. Lett. 75, 1260–1263 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  22. Zee, A. Einstein Gravity in a Nutshell (Princeton Univ. Press, 2013).

    MATH  Google Scholar 

  23. Dabby, F. W. & Whinnery, J. R. Thermal self focusing of lasers beams in lead glasses. Appl. Phys. Lett. 13, 284–286 (1968).

    Article  ADS  Google Scholar 

  24. Rotschild, C., Cohen, O., Manela, O., Segev, M. & Carmon, T. Solitons in nonlinear media with an infinite range of nonlocality: First observation of coherent elliptic solitons and of vortex-ring solitons. Phys. Rev. Lett. 95, 213904 (2005).

    Article  ADS  Google Scholar 

  25. Rotschild, C., Alfassi, B., Cohen, O. & Segev, M. Long-range interactions between optical solitons. Nature Phys. 2, 769–774 (2006).

    Article  ADS  Google Scholar 

  26. Pertsch, T., Dannberg, P., Elflein, W., Bräuer, A. & Lederer, F. Optical Bloch oscillations in temperature tuned waveguide arrays. Phys. Rev. Lett. 83, 4752–4755 (1999).

    Article  ADS  Google Scholar 

  27. Schwartz, T., Bartal, G., Fishman, S. & Segev, M. Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature 446, 52–55 (2007).

    Article  ADS  Google Scholar 

  28. Lahini, Y. et al. Anderson localization and nonlinearity in one-dimensional disordered photonic lattices. Phys. Rev. Lett. 100, 013906 (2008).

    Article  ADS  Google Scholar 

  29. Plotnik, Y. et al. Experimental observation of optical bound states in the continuum. Phys. Rev. Lett. 107, 183901 (2011).

    Article  ADS  Google Scholar 

  30. Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

    Article  ADS  Google Scholar 

  31. Penrose, R. On gravity’s role in quantum state reduction. Gen. Relativ. Gravit. 28, 581–600 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  32. Moroz, I. M., Penrose, R. & Tod, P. Spherically-symmetric solutions of the Schrödinger–Newton equations. Class. Quantum Gravity 15, 2733–2742 (1998).

    Article  ADS  Google Scholar 

  33. Tod, P. & Moroz, I. M. An analytical approach to the Schrödinger–Newton equations. Nonlinearity 12, 201–216 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  34. Page, D. N. Classical and quantum decay of oscillations: Oscillating self-gravitating real scalar field solitons. Phys. Rev. D 70, 023002 (2004).

    Article  ADS  Google Scholar 

  35. Guzmán, F. S. & Ureña-López, L. A. Evolution of the Schrödinger–Newton system for a self-gravitating scalar field. Phys. Rev. D 69, 124033 (2004).

    Article  ADS  Google Scholar 

  36. Diósi, L. Notes on certain Newton gravity mechanisms of wavefunction localization and decoherence. J. Phys. A 40, 2989–2995 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  37. Giulini, D. & Großardt, A. Centre-of-mass motion in multi-particle Schrödinger–Newton dynamics. New J. Phys. 16, 075005 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  38. Bahrami, M., Großardt, A., Donadi, S. & Bassi, A. The Schrödinger–Newton equation and its foundations. New J. Phys. 16, 115007 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  39. Diósi, L. Gravitation and quantum-mechanical localization of macro-objects. Phys. Lett. A 105, 199–202 (1984).

    Article  ADS  Google Scholar 

  40. Einstein, A. Time, space, and gravitation. Science 51, 8–10 (1920).

    Article  ADS  Google Scholar 

  41. Carlip, S. Is quantum gravity necessary? Class. Quantum Gravity 25, 154010 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  42. Berry, M. V. & Balazs, N. L. Nonspreading wave packets. Am. J. Phys. 47, 264–267 (1979).

    Article  ADS  Google Scholar 

  43. Siviloglou, G. A. & Christodoulides, D. N. Accelerating finite energy Airy beams. Opt. Lett. 32, 979–981 (2007).

    Article  ADS  Google Scholar 

  44. Siviloglou, G. A., Broky, J., Dogariu, A. & Christodoulides, D. N. Observation of accelerating Airy beams. Phys. Rev. Lett. 99, 213901 (2007).

    Article  ADS  Google Scholar 

  45. Baumgartl, J., Mazilu, M. & Dholakia, K. Optically mediated particle clearing using Airy wavepackets. Nature Photon. 2, 675–678 (2008).

    Article  ADS  Google Scholar 

  46. Polynkin, P., Kolesik, M., Moloney, J. V., Siviloglou, G. A. & Christodoulides, D. N. Curved plasma channel generation using ultraintense airy beams. Science 324, 229–232 (2009).

    Article  ADS  Google Scholar 

  47. Schley, R. et al. Loss-proof self-accelerating beams and their use in non-paraxial manipulation of particles’ trajectories. Nature Commun. 5, 5189 (2014).

    Article  Google Scholar 

  48. Kaminer, I., Nemirovsky, J., Rechtsman, M., Bekenstein, R. & Segev, M. Self-accelerating Dirac particles and prolonging the lifetime of relativistic fermions. Nature Phys. 11, 261–267 (2015).

    Article  ADS  Google Scholar 

  49. Bekenstein, R. & Segev, M. Self-accelerating optical beams in highly nonlocal nonlinear media. Opt. Express 19, 23706 (2011).

    Article  ADS  Google Scholar 

  50. Alfassi, B., Rotschild, C., Manela, O., Segev, M. & Christodoulides, D. N. Boundary force effects exerted on solitons in highly nonlinear media. Opt. Lett. 32, 154–156 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. Ori for valuable discussions that considerably contributed to our work, and A. Arie and I. Dolev for letting us use their phase masks for generating the accelerating beams. R. Bekenstein gratefully acknowledges the support of the Adams Fellowship Program of the Israel Academy of Sciences and Humanities, and a fellowship from the Israel Ministry of Science and Technology. This research was also supported by the ICore Excellence centre ‘Circle of Light’ and the Binational USA-Israel Science Foundation BSF.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed significantly to this work.

Corresponding author

Correspondence to Rivka Bekenstein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 870 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bekenstein, R., Schley, R., Mutzafi, M. et al. Optical simulations of gravitational effects in the Newton–Schrödinger system. Nature Phys 11, 872–878 (2015). https://doi.org/10.1038/nphys3451

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3451

  • Springer Nature Limited

This article is cited by

Navigation