Skip to main content
Log in

Fractionalize this

  • Perspective
  • Published:

From Nature Physics

View current issue Submit your manuscript

Precisely what are the electrons in a high-temperature superconductor doing before they superconduct? Strong electronic correlations may give rise to composite rather than fractionalized excitations, as is typical in other strongly coupled systems such as quark matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Phase diagram and anomalous transport in the cuprate high-temperature superconductors.

Similar content being viewed by others

References

  1. Doiron-Leyraud, N. et al. Nature 447, 565–568 (2007).

    Article  ADS  Google Scholar 

  2. Fournier, D. et al. Nature Phys. 10.1038/nphys1763 (2010).

  3. Norman, M. R. et al. Nature 392, 157–160 (1998).

    Article  ADS  Google Scholar 

  4. Damascelli, A. et al. Rev. Mod. Phys. 75, 473–541 (2003).

    Article  ADS  Google Scholar 

  5. Hertz, J. A. Phys. Rev. B 14, 1165–1184 (1976).

    Article  ADS  Google Scholar 

  6. Phillips, P. & Chamon, C. Phys. Rev. Lett. 95, 107002 (2005).

    Article  ADS  Google Scholar 

  7. Varma, C. M. et al. Phys. Rev. Lett. 63, 1996–1999 (1989).

    Article  ADS  Google Scholar 

  8. Aji, V. et al. Phys. Rev. B 81, 064515 (2010).

    Article  ADS  Google Scholar 

  9. Faulkner, T. Science 329, 1043–1047 (2010).

    Article  ADS  Google Scholar 

  10. Chen, C. T. et al. Phys. Rev. Lett. 66, 104–107 (1991).

    Article  ADS  Google Scholar 

  11. Meinders, M. B. J. et al. Phys. Rev. B 48, 3916–3926 (1993).

    Article  ADS  Google Scholar 

  12. Phillips, P. Rev. Mod. Phys. 82, 1719–1742 (2010).

    Article  ADS  Google Scholar 

  13. Leigh, R. G. et al. Phys. Rev. Lett. 77, 014512 (2008).

    Google Scholar 

  14. Anderson, P. W. J. Phys. Cond. Matt. 16, R755–R769 (2004).

    Article  Google Scholar 

  15. Chakraborty, S. et al. Phys. Rev. B 81, 235135 (2010).

    Article  ADS  Google Scholar 

  16. Harris, A. B. & Lange, R. V. Phys. Rev. 157, 295–314 (1967).

    Article  ADS  Google Scholar 

  17. Lin, J. Y. et al. Preprint at http://arXiv.org/abs/1009.2560 (2010).

  18. Vidhyadhiraja, N. S. et al. Phys. Rev. Lett. 102, 206407 (2009).

    Article  ADS  Google Scholar 

  19. Chernyshev, A. L. et al. Phys. Rev. B 70, 235111 (2004).

    Article  ADS  Google Scholar 

  20. Mott, N. F. Proc. Phys. Soc. Sec. A 62, 416–422 (1949).

    Article  ADS  Google Scholar 

  21. Kohn, W. Phys. Rev. 133, A171–181 (1964).

    Article  ADS  Google Scholar 

  22. Kaplan, T. A., Horsch, P. & Fulde, P. Phys. Rev. Lett. 49, 889–892 (1982).

    Article  ADS  Google Scholar 

  23. Ando, Y. et al. Phys. Rev. Lett. 92, 197001 (2004).

    Article  ADS  Google Scholar 

  24. Gor'kov, L. P. & Tietel'baum, G. B. Phys. Rev. Lett. 97, 247003 (2006).

    Article  ADS  Google Scholar 

  25. Chakraborty, S. & Phillips, P. Phys. Rev. B 80, 132505 (2009).

    Article  ADS  Google Scholar 

  26. Edalati, M., Leigh, R. G. & Phillips, P. Preprint at http://arXiv.org/abs/1010.3238 (2010).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phillips, P. Fractionalize this. Nature Phys 6, 931–933 (2010). https://doi.org/10.1038/nphys1881

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1881

  • Springer Nature Limited

This article is cited by

Navigation