Skip to main content
Log in

Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit

  • Article
  • Published:

From Nature Physics

View current issue Submit your manuscript

Abstract

The theory of quantum measurement of mechanical motion, describing the mutual coupling of a meter and a measured object, predicts a variety of phenomena such as quantum backaction, quantum correlations and non-classical states of motion. In spite of great experimental efforts, mostly based on nano-electromechanical systems, probing these in a laboratory setting has as yet eluded researchers. Cavity optomechanical systems, in which a high-quality optical resonator is parametrically coupled to a mechanical oscillator, hold great promise as a route towards the observation of such effects with macroscopic oscillators. Here, we present measurements on optomechanical systems exhibiting radiofrequency (62–122 MHz) mechanical modes, cooled to very low occupancy using a combination of cryogenic precooling and resolved-sideband laser cooling. The lowest achieved occupancy is n∼63. Optical measurements of these ultracold oscillators’ motion are shown to perform in a near-ideal manner, exhibiting an imprecision–backaction product about one order of magnitude lower than the results obtained with nano-electromechanical transducers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Cryogenic cooling and displacement measurements of a micromechanical oscillator.
Figure 2: Thermalization and probing of a micromechanical oscillator.
Figure 3: Cryogenic precooling and resolved-sideband laser cooling.
Figure 4: Resolved-sideband laser cooling and heating by absorption.

Similar content being viewed by others

References

  1. Braginsky, V. B. & Khalili, F. Y. Quantum Measurement (Cambridge Univ. Press, 1992).

    Book  Google Scholar 

  2. Schwab, K. C. & Roukes, M. L. Putting mechanics into quantum mechanics. Phys. Today 58, 36–42 (2005).

    Article  Google Scholar 

  3. Bose, S., Jacobs, K. & Knight, P. L. Scheme to probe the decoherence of a macroscopic object. Phys. Rev. A 59, 3204–3210 (1999).

    Article  ADS  Google Scholar 

  4. Tittonen, I. et al. Interferometric measurements of the position of a macroscopic body: Towards observations of quantum limits. Phys. Rev. A 59, 1038–1044 (1999).

    Article  ADS  Google Scholar 

  5. Marshall, W., Simon, Ch., Penrose, R. & Bouwmeester, D. Towards quantum superpositions of a mirror. Phys. Rev. Lett. 91, 130401 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  6. Cleland, A. & Roukes, M. A nanometre-scale mechanical electrometer. Nature 392, 160–162 (1998).

    Article  ADS  Google Scholar 

  7. Knobel, R. G. & Cleland, A. N. Nanometre-scale displacement sensing using a single-electron transistor. Nature 424, 291–293 (2003).

    Article  ADS  Google Scholar 

  8. LaHaye, M. D., Buu, O., Camarota, B. & Schwab, K. C. Approaching the quantum limit of a nanomechanical resonator. Science 304, 74–77 (2004).

    Article  ADS  Google Scholar 

  9. Naik, A. et al. Cooling a nanomechanical resonator with quantum back-action. Nature 443, 193–196 (2006).

    Article  ADS  Google Scholar 

  10. Regal, C. A., Teufel, J. D. & Lehnert, K. W. Measuring nanomechanical motion with a microwave cavity interferometer. Nature Phys. 4, 555–560 (2008).

    Article  Google Scholar 

  11. Teufel, J. D., Harlow, J. D., Regal, C. A. & Lehnert, K. W. Dynamical backaction of microwave fields on a nanomechanical oscillator. Phys. Rev. Lett. 101, 197203 (2008).

    Article  ADS  Google Scholar 

  12. Etaki, S. et al. Motion detection of a micromechanical resonator embedded in a d.c. SQUID. Nature Phys. 4, 785–788 (2008).

    Article  ADS  Google Scholar 

  13. Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: Back-action at the mesoscale. Science 321, 1172–1176 (2008).

    Article  ADS  Google Scholar 

  14. Arcizet, O. et al. High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor. Phys. Rev. Lett. 97, 133601 (2006).

    Article  ADS  Google Scholar 

  15. Schliesser, A. et al. High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators. New J. Phys. 10, 095015 (2008).

    Article  ADS  Google Scholar 

  16. Dykman, M. I. Heating and cooling of local and quasilocal vibrations by a nonresonance field. Sov. Phys. Solid State 20, 1306–1311 (1978).

    Google Scholar 

  17. Gigan, S. et al. Self-cooling of a micromirror by radiation pressure. Nature 444, 67–70 (2006).

    Article  ADS  Google Scholar 

  18. Arcizet, O. et al. Radiation-pressure cooling and optomechanical instability of a micromirror. Nature 444, 71–74 (2006).

    Article  ADS  Google Scholar 

  19. Schliesser, A. et al. Radiation pressure cooling of a micromechanical oscillator using dynamical backaction. Phys. Rev. Lett. 97, 243905 (2006).

    Article  ADS  Google Scholar 

  20. Schliesser, A. et al. Resolved-sideband cooling of a micromechanical oscillator. Nature Phys. 4, 415–419 (2008).

    Article  ADS  Google Scholar 

  21. Clerk, A. A., Devoret, M. H., Girvin, S. M., Marquardt, F. & Schoelkopf, R. J. Introduction to quantum noise, measurement and amplification. Preprint at <http://arxiv.org/abs/0810.4729> (2008).

  22. Flowers-Jacobs, N. E., Schmidt, D. R. & Lehnert, K. W. Intrinsic noise properties of atomic point contact displacement detectors. Phys. Rev. Lett. 98, 096804 (2007).

    Article  ADS  Google Scholar 

  23. Armani, D. K., Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003).

    Article  ADS  Google Scholar 

  24. Kippenberg, T. J., Rokhsari, H., Carmon, T., Scherer, A. & Vahala, K. J. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett. 95, 033901 (2005).

    Article  ADS  Google Scholar 

  25. Pinard, M., Hadjar, Y. & Heimann, A. Effective mass in quantum effects of radiation pressure. Eur. Phys. J. D 7, 107–116 (1999).

    ADS  Google Scholar 

  26. Anetsberger, G., Rivière, R., Schliesser, A., Arcizet, O. & Kippenberg, T. J. Ultralow-dissipation optomechanical resonators on a chip. Nature Photon. 2, 627–633 (2008).

    Article  Google Scholar 

  27. Arcizet, O., Riviere, R., Schliesser, A. & Kippenberg, T. Cryogenic properties of optomechanical silica microcavities. Preprint at <http://arxiv.org/abs/0901.1292> (2009).

  28. Pohl, R. O., Liu, X. & Thompson, E. Low-temperature thermal conductivity and acoustic attenuation in amorphous solids. Rev. Mod. Phys. 74, 991–1013 (2002).

    Article  ADS  Google Scholar 

  29. Caves, C. M. Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693–1708 (1981).

    Article  ADS  Google Scholar 

  30. Braginsky, V. B. & Vyatchanin, S. P. Low quantum noise tranquilizer for Fabry–Perot interferometer. Phys. Lett. A 293, 228–234 (2002).

    Article  ADS  Google Scholar 

  31. Wineland, D. J. & Itano, W. M. Laser cooling of atoms. Phys. Rev. A 20, 1521–1540 (1979).

    Article  ADS  Google Scholar 

  32. Wilson-Rae, I., Nooshi, N., Zwerger, W. & Kippenberg, T. J. Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett. 99, 093901 (2007).

    Article  ADS  Google Scholar 

  33. Marquardt, F., Chen, J. P., Clerk, A. A. & Girvin, S. M. Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007).

    Article  ADS  Google Scholar 

  34. Braginsky, V. B. & Khalili, F. Ya. Quantum nondemolition measurements: The route from toys to tools. Rev. Mod. Phys. 68, 1–11 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  35. Genes, C., Vitali, D., Tombesi, P., Gigan, S. & Aspelmeyer, M. Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes. Phys. Rev. A 77, 033804 (2008).

    Article  ADS  Google Scholar 

  36. Ilchenko, V. S., Savchenkov, A. A., Matsko, A. B. & Maleki, L. Nonlinear optics and crystalline whispering gallery mode cavities. Phys. Rev. Lett. 92, 043903 (2004).

    Article  ADS  Google Scholar 

  37. Fabre, C. et al. Quantum-noise reduction using a cavity with a movable mirror. Phys. Rev. A 49, 1337–1343 (1994).

    Article  ADS  Google Scholar 

  38. Mancini, S. & Tombesi, P. Quantum noise reduction by radiation pressure. Phys. Rev. A 49, 4055–4065 (1994).

    Article  ADS  Google Scholar 

  39. Vitali, D. et al. Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98, 030405 (2007).

    Article  ADS  Google Scholar 

  40. Clerk, A. A., Marquardt, F. & Jacobs, K. Back-action evasion and squeezing of a mechanical resonator using a cavity detector. New J. Phys. 10, 095010 (2008).

    Article  ADS  Google Scholar 

  41. Heidmann, A., Hadjar, Y. & Pinard, M. Quantum nondemolition measurement by optomechanical coupling. Appl. Phys. B 64, 173–180 (1997).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by an Independent Max Planck Junior Research Group of the Max Planck Society, the Deutsche Forschungsgemeinschaft (DFG-GSC), the FP7 Project MINOS and a Marie Curie Excellence Grant. O.A. acknowledges financial support from a Marie Curie Grant (project QUOM). T. Becker is gratefully acknowledged for support with the cryogenic experiments, and J. Kotthaus for sample fabrication. T.J.K. gratefully thanks P. Gruss and MPQ for continued Max-Planck support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. J. Kippenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schliesser, A., Arcizet, O., Rivière, R. et al. Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit. Nature Phys 5, 509–514 (2009). https://doi.org/10.1038/nphys1304

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1304

  • Springer Nature Limited

This article is cited by

Navigation