Skip to main content
Log in

Communications expands its space

  • Feature
  • Published:

From Nature Photonics

View current issue Submit your manuscript

Optical communication systems have traditionally sent the most information possible through a few spatial channels to minimize cost and maximize density. Energy constraints now compel systems at the longest and shortest distances to employ a new strategy of using more spatial channels, each carrying less data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Ultra-long-haul submarine transport system designs.
Figure 2: Short-reach chip-to-chip interconnect designs.

References

  1. Ip, E. & Kahn, J. M. J. Lightwave Technol. 28, 502–519 (2010).

    Article  ADS  Google Scholar 

  2. Essiambre, R., Kramer, G., Winzer, P. J., Foschini, G. J. & Goebel, B. J. Lightwave Technol. 28, 662–701 (2010).

    Article  ADS  Google Scholar 

  3. Chraplyvy, A. R. The coming capacity crunch. In Proc. European Conf. Optical Commun. 1.0.2 (IEEE, 2009).

    Google Scholar 

  4. Richardson, D. J., Fini, J. M. & Nelson, L. E. Nat. Photon. 7, 354–362 (2013).

    Article  ADS  Google Scholar 

  5. Arık, S. Ö., Ho, K.-P. & Kahn, J. M. Opt. Express 22, 29868–29887 (2014).

    Article  ADS  Google Scholar 

  6. Antonelli, C., Mecozzi, A., Golani, O. & Shtaif, M. Inter-modal nonlinear interference in SDM systems and its impact on information capacity. In 2016 IEEE Photonics Soc. Summer Topical Meeting Series 10–11 (IEEE, 2016).

    Chapter  Google Scholar 

  7. Downie, J. D. et al. Quasi-single-mode transmission for long-haul and submarine optical communications. In Conf. Lasers Electro-Optics SM4F.6 (OSA, 2016).

    Chapter  Google Scholar 

  8. Caves, C. M. & Drummond, P. D. Rev. Mod. Phys. 66, 481–537 (1994).

    Article  ADS  Google Scholar 

  9. Li, G., Bai, N., Zhao, N. & Xia, C. Adv. Opt. Photon. 6, 413–487 (2014).

    Article  Google Scholar 

  10. Turukhin, A. et al. 105.1 Tb/s power-efficient transmission over 14,350 km using a 12-core fiber. In Optical Fiber Commun. Conf. Th4C.1 (OSA, 2016).

    Chapter  Google Scholar 

  11. http://laserlightcomms.com/halo_network.php

  12. Hempel, J. Inside Facebook's ambitious plan to connect the whole world. Wired (19 January 2016); go.nature.com/2gwzoaV

    Google Scholar 

  13. Miller, D. A. B. Preprint at https://arxiv.org/abs/1609.05510 (2016).

  14. Heddeghem, W. V. et al. Comput. Commun. 50, 64–76 (2014).

    Article  Google Scholar 

  15. Singh, A. et al. Jupiter rising: a decade of Clos topologies and centralized control in Google's data center network. In SIGCOMM '15 183–197 (2015).

    Chapter  Google Scholar 

  16. Park, H.-C. et al. Opt. Express 20, B197–B203 (2012).

    Article  Google Scholar 

  17. Farrington, N. et al. Helios: a hybrid electrical/optical switch architecture for modular data centers. In SIGCOMM '10 339–350 (2010).

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joseph M. Kahn or David A. B. Miller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahn, J., Miller, D. Communications expands its space. Nature Photon 11, 5–8 (2017). https://doi.org/10.1038/nphoton.2016.256

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.256

  • Springer Nature Limited

This article is cited by

Navigation