Skip to main content
Log in

Optical tweezers study life under tension

  • Commentary
  • Published:

From Nature Photonics

View current issue Submit your manuscript

Optical tweezers have become one of the primary weapons in the arsenal of biophysicists, and have revolutionized the new field of single-molecule biophysics. Today's techniques allow high-resolution experiments on biological macromolecules that were mere pipe dreams only a decade ago.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Biological applications of optical tweezers to kinesin motor stepping and RNA folding.
Figure 2: Twisting DNA with an optical torque wrench.
Figure 3: Examples of the diverse protein and nucleic acid systems that have been studied using optical tweezers, ranging in complexity from simple hairpins, formed in RNA or double-stranded DNA, to the bacterial ribosome, a macromolecular machine comprised of over 50 protein subunits and three structured RNA molecules (not to scale).

References

  1. Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Opt. Lett. 11, 288–290 (1986).

    Article  ADS  Google Scholar 

  2. Svoboda, K. & Block, S. M. Ann. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).

    Article  Google Scholar 

  3. Neuman, K. C. & Block, S. M. Rev. Sci. Instrum. 75, 2787–2809 (2004).

    Article  ADS  Google Scholar 

  4. Svoboda, K., Schmidt, C. F., Schnapp, B. J. & Block, S. M. Nature 365, 721–727 (1993).

    Article  ADS  Google Scholar 

  5. Finer, J. T., Simmons, R. M. & Spudich, J. A. Nature 368, 113–119 (1994).

    Article  ADS  Google Scholar 

  6. Abbondanzieri, E. A., Greenleaf, W. J., Shaevitz, J. W., Landick, R. & Block, S. M. Nature 438, 460–465 (2005).

    Article  ADS  Google Scholar 

  7. Visscher, K. & Block, S. M. Meth. Enzymol. 298, 460–489 (1998).

    Article  Google Scholar 

  8. Guydosh, N. R. & Block, S. M. Nature 461, 125–128 (2009).

    Article  ADS  Google Scholar 

  9. Liphardt, J., Onoa, B., Smith, S. B., Tinoco, I. Jr & Bustamante, C. Science 292, 733–737 (2001).

    Article  ADS  Google Scholar 

  10. Woodside, M. T. et al. Science 314, 1001–1004 (2006).

    Article  ADS  Google Scholar 

  11. Block, S. M., Asbury, C. L., Shaevitz, J. W. & Lang, M. J. Proc. Natl Acad. Sci. USA 100, 2351–2356 (2003).

    Article  ADS  Google Scholar 

  12. Lang, M. J., Fordyce, P. M., Engh, A. M., Neuman, K. C. & Block, S. M. Nature Meth. 1, 133–139 (2004).

    Article  Google Scholar 

  13. Comstock, M. J., Ha, T. & Chemla, Y. R. Nature Meth. 8, 335–340 (2011).

    Article  Google Scholar 

  14. Carter, A. R. et al. Appl. Opt. 46, 421–427 (2007).

    Article  ADS  Google Scholar 

  15. Moffitt, J. R., Chemla, Y. R., Izhaky, D. & Bustamante, C. Proc. Natl Acad. Sci. USA 103, 9006–9011 (2006).

    Article  ADS  Google Scholar 

  16. Greenleaf, W. J., Woodside, M. T., Abbondanzieri, E. A. & Block, S. M. Phys. Rev. Lett. 95, 208102 (2005).

    Article  ADS  Google Scholar 

  17. Kerssemakers, J. W. et al. Nature 442, 709–712 (2006).

    Article  ADS  Google Scholar 

  18. Grier, D. G. Nature 424, 810–816 (2003).

    Article  ADS  Google Scholar 

  19. La Porta, A. & Wang, M. D. Phys. Rev. Lett. 92, 190801 (2004).

    Article  ADS  Google Scholar 

  20. Asbury, C. L., Fehr, A. N. & Block, S. M. Science 302, 2130–2134 (2003).

    Article  ADS  Google Scholar 

  21. Larson, M. H., Landick, R. & Block, S. M. Mol. Cell 41, 249–262 (2011).

    Article  Google Scholar 

  22. Galburt, E. A. et al. Nature 446, 820–823 (2007).

    Article  ADS  Google Scholar 

  23. Smith, D. E. et al. Nature 413, 748–752 (2001).

    Article  ADS  Google Scholar 

  24. Sakakibara, H., Kojima, H., Sakai, Y., Katayama, E. & Oiwa, K. Nature 400, 586–590 (1999).

    Article  ADS  Google Scholar 

  25. Dumont, S. et al. Nature 439, 105–108 (2006).

    Article  ADS  Google Scholar 

  26. Perkins, T. T., Li, H. W., Dalal, R. V., Gelles, J. & Block, S. M. Biophys. J. 86, 1640–1648 (2004).

    Article  ADS  Google Scholar 

  27. Wen, J. D. et al. Nature 452, 598–603 (2008).

    Article  ADS  Google Scholar 

  28. Wang, M. D., Yin, H., Landick, R., Gelles, J. & Block, S. M. Biophys. J. 72, 1335–1346 (1997).

    Article  ADS  Google Scholar 

  29. Greenleaf, W. J., Frieda, K. L., Foster, D. A., Woodside, M. T. & Block, S. M. Science 319, 630–633 (2008).

    Article  Google Scholar 

  30. Kellermayer, M. S., Smith, S. B., Granzier, H. L. & Bustamante, C. Science 276, 1112–1116 (1997).

    Article  Google Scholar 

  31. Shank, E. A., Cecconi, C., Dill, J. W., Marqusee, S. & Bustamante, C. Nature 465, 637–640 (2010).

    Article  ADS  Google Scholar 

  32. Hohng, S. et al. Science 318, 279–283 (2007).

    Article  ADS  Google Scholar 

  33. van Mameren, J. et al. Nature 457, 745–748 (2009).

    Article  ADS  Google Scholar 

  34. Brau, R. R., Tarsa, P. B., Ferrer, J. M., Lee, P. & Lang, M. J. Biophys. J. 91, 1069–1077 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

S.M.B. acknowledges support from grant GM51453 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven M Block.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fazal, F., Block, S. Optical tweezers study life under tension. Nature Photon 5, 318–321 (2011). https://doi.org/10.1038/nphoton.2011.100

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2011.100

  • Springer Nature Limited

This article is cited by

Navigation