Skip to main content
Log in

Complete optical isolation created by indirect interband photonic transitions

  • Letter
  • Published:

From Nature Photonics

View current issue Submit your manuscript

A Corrigendum to this article was published on 15 April 2009

This article has been updated

Abstract

Achieving on-chip optical signal isolation is a fundamental difficulty in integrated photonics1. The need to overcome this difficulty is becoming increasingly urgent, especially with the emergence of silicon nano-photonics2,3,4, which promises to create on-chip optical systems at an unprecedented scale of integration. Until now, there have been no techniques that provide complete on-chip signal isolation using materials or processes that are fundamentally compatible with silicon CMOS processes. Based on the effects of photonic transitions5,6, we show here that a linear, broadband and non-reciprocal isolation can be accomplished by spatial–temporal refractive index modulations that simultaneously impart frequency and wavevector shifts during the photonic transition process. We further show that a non-reciprocal effect can be accomplished in dynamically modulated micrometre-scale ring-resonator structures. This work demonstrates that on-chip isolation can be accomplished with dynamic photonic structures in standard material systems that are widely used for integrated optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Schematic of indirect photonic transition in a silicon slab waveguide.
Figure 2: Non-reciprocal frequency conversion in a waveguide.
Figure 3: Schematic of a ring resonator designed for non-reciprocal frequency conversion.
Figure 4: Field distribution and frequency response of the modulated coupled ring–waveguide structure.

Similar content being viewed by others

Change history

  • 15 April 2009

    In the version of this Letter originally published, equation (4) was incorrect, as was the final sentence in the third paragraph from the end of page 92. These errors have now been corrected in the HTML and PDF versions.

References

  1. Soljacic, M. & Joannopoulos, J. D. Enhancement of nonlinear effects using photonic crystals. Nature Mater. 3, 211–219 (2004).

    Article  ADS  Google Scholar 

  2. Pavesi, L. & Lockwood, D. J. Silicon Photonics (Springer, 2004).

    Google Scholar 

  3. Almeida, V. R., Barrios, C. A., Panepucci, R. R. & Lipson, M. All-optical control of light on a silicon chip. Nature 431, 1081–1084 (2004).

    Article  ADS  Google Scholar 

  4. Miller, D. A. B. Optical interconnects to silicon. IEEE J. Sel. Top. Quant. Electron. 6, 1312–1317 (2000).

    Article  ADS  Google Scholar 

  5. Winn, J. N., Fan, S., Joannopoulos, J. D. & Ippen, E. P. Interband transitions in photonic crystals. Phys. Rev. B 59, 1551–1554 (1998).

    Article  ADS  Google Scholar 

  6. Dong, P., Preble, S. F., Robinson, J. T., Manipatruni, S. & Lipson, M. Inducing photonic transitions between discrete modes in a silicon optical microcavity. Phys. Rev. Lett. 100, 033904 (2008).

    Article  ADS  Google Scholar 

  7. Espinola, R. L., Izuhara, T., Tsai, M. C., Osgood, R. M. Jr & Dötsch, H. Magneto-optical nonreciprocal phase shift in garnet/silicon-on-insulator waveguides. Opt. Lett. 29, 941–943 (2004).

    Article  ADS  Google Scholar 

  8. Levy, M. A nanomagnetic route to bias-magnet-free, on-chip Faraday rotators. J. Opt. Soc. Am. B 22, 254–260 (2005).

    Article  ADS  Google Scholar 

  9. Zaman, T. R., Guo, X. & Ram, R. J. Faraday rotation in an InP waveguide. Appl. Phys. Lett. 90, 023514 (2007).

    Article  ADS  Google Scholar 

  10. Dötsch, H. et al. Applications of magneto-optical waveguides in integrated optics: review. J. Opt. Soc. Am. B 22, 240–253 (2005).

    Article  ADS  Google Scholar 

  11. Soljaic, M., Luo, C., Joannopoulos, J. D. & Fan, S. Nonlinear photonic microdevices for optical integration. Opt. Lett. 28, 637–639 (2003).

    Article  ADS  Google Scholar 

  12. Gallo, K., Assanto, G., Parameswaran, K. R. & Fejer, M. M. All-optical diode in a periodically poled lithium niobate waveguide. Appl. Phys. Lett. 79, 314–316 (2001).

    Article  ADS  Google Scholar 

  13. Ibrahim, S. K., Bhandare, S., Sandel, D., Zhang, H. & Noe, R. Non-magnetic 30 dB integrated optical isolator in III/V material. Electron. Lett. 40, 1293–1294 (2004).

    Article  Google Scholar 

  14. Yariv, A. Electro-optic frequency modulation in optical resonators. Proc. IEEE 52, 719–720 (1964).

    Article  Google Scholar 

  15. Siegman, A. Lasers 986 (University Science Books, 1986).

    Google Scholar 

  16. Reed, E. J., Soljacic, M. & Joannopoulos, J. D. Reversed Doppler effect in photonic crystals. Phys. Rev. Lett. 91, 133901 (2003).

    Article  ADS  Google Scholar 

  17. Yanik, M. F. & Fan, S. Stopping light all-optically. Phys. Rev. Lett. 92, 083901 (2004).

    Article  ADS  Google Scholar 

  18. Notomi, M. & Mitsugi, S. Wavelength conversion via dynamic refractive index tuning of a cavity. Phys. Rev. A 73, 051803(R) (2006).

    Article  ADS  Google Scholar 

  19. Taflove, A. & Hagness, S. C. Computational Electrodynamics: The Finite-Difference Time-Domain Method 2nd edn (Artech House, 2000).

    MATH  Google Scholar 

  20. Preble, S. F., Xu, Q. & Lipson, M. Changing the colour of light in a silicon resonator. Nature Photon. 1, 293–296 (2007).

    Article  ADS  Google Scholar 

  21. Jiao, Y., Fan, S. & Miller, D. A. B. Demonstrations of systematic photonic crystal design and optimization by low rank adjustment: an extremely compact mode separator. Opt. Lett. 30, 141–143 (2005).

    Article  ADS  Google Scholar 

  22. Lee, B. T. & Shin, S. Y. Mode-order converter in a multimode waveguide. Opt. Lett. 28, 1660–1662 (2003).

    Article  ADS  Google Scholar 

  23. Fan, S. et al. Guided and defect modes in periodic dielectric waveguides. J. Opt. Soc. Am. B 12, 1267–1272 (1995).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science Foundation (grant no. ECS-0622212). S.F. acknowledges discussions with Z. Wang and M. Soljacic. The computations were performed at the Pittsburgh Supercomputing Center and the National Center for Supercomputing Applications, through the support of the National Science Foundation TeraGrid programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanhui Fan.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Z., Fan, S. Complete optical isolation created by indirect interband photonic transitions. Nature Photon 3, 91–94 (2009). https://doi.org/10.1038/nphoton.2008.273

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2008.273

  • Springer Nature Limited

This article is cited by

Navigation