Skip to main content

Advertisement

Log in

Long-term monitoring for nanomedicine implants and drugs

  • Commentary
  • Published:

From Nature Nanotechnology

View current issue Submit your manuscript

Increasing globalization means that traditional occupational epidemiological approaches may no longer apply, suggesting a need for an alternative model to assess the long-term impact of nanomaterial exposure on health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Illustration of the challenge in identifying suitable nanomaterial-exposed cohorts using the traditional occupational exposure paradigm.
Figure 2: Illustration of the range of application areas of nanomedicines.

References

  1. Lynch, I., Feitshans, I. L. & Kendall, M. Phil. Trans. R. Soc. B 370, 20140162 (2015).

    Article  Google Scholar 

  2. Kendall, M. & Holgate, S. Respirology 17, 743–758 (2012).

    Article  Google Scholar 

  3. Künzli, N. Swiss Med. Wkly 135, 697–702 (2005).

    Google Scholar 

  4. Foss Hansen, S. M., Baun, A. & Tickner, J. A. Nature Nanotech. 3, 444–447 (2008).

    Article  Google Scholar 

  5. Oberdörster, G., Oberdörster, E. & Oberdörster, J. Environ. Health Perspect. 113, 823–839 (2005).

    Article  Google Scholar 

  6. Donaldson, K. & Poland, C. A. Curr. Opin. Biotechnol. 24, 724–734 (2013).

    Article  CAS  Google Scholar 

  7. Kuempel, E. D., Geraci, C. L. & Schulte, P. A. Ann. Occup. Hyg. 56, 491–505 (2012).

    Google Scholar 

  8. Migliore, L. & Coppedè, F. Mutat. Res. 512, 135–153 (2002).

    Article  CAS  Google Scholar 

  9. The National Institute for Occupational Safety and Health (NIOSH) Current Intelligence Bulletin 63: Occupational Exposure to Titanium Dioxide (2011); http://www.cdc.gov/niosh/docs/2011-160

  10. Woskie, S. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2, 685–692 (2010).

    Article  CAS  Google Scholar 

  11. Schulte, P. A. et al. J. Nanopart. Res. 16, 2153 (2014).

    Article  CAS  Google Scholar 

  12. Maine, E., Thomas, V. J., Bliemel, M., Murira, A. & Utterback, J. Nature Nanotech. 9, 2–5 (2014).

    Article  CAS  Google Scholar 

  13. Woodrow Wilson Centre The Project on Emerging Nanotechnologies: Consumer Products Inventory; http://www.nanotechproject.org/cpi

  14. Nohynek, G. J., Lademann, J., Ribaud, C. & Roberts, M. S. Crit. Rev. Toxicol. 3, 251–277 (2007).

    Article  Google Scholar 

  15. Bowman, D. M., van Calster, C. & Friedrichs, S. Nature Nanotech. 5, 92 (2010).

    Article  CAS  Google Scholar 

  16. Guidance for Industry: Safety of Nanomaterials in Cosmetic Products FDA-2011-D-0489 (FDA, 2014).

  17. European Commission and ETP Nanomedicine Roadmaps in Nanomedicine: Towards 2020 (2009); http://go.nature.com/xRdlgP

  18. Biomaterials Market for Implantable Devices (Material Type — Metals, Polymers, Ceramics and Natural, Applications — Cardiology, Orthopedics, Dental, Ophthalmology and Others): Global Industry Analysis, Size, Share, Growth, Trends and Forecast 2013–2019 (Transparency Market Research, 2012).

  19. Hartmann, A. et al. PLoS ONE 8, e70359 (2013).

    Article  CAS  Google Scholar 

  20. Bhabra, G. et al. Nature Nanotech. 4, 876–883 (2009).

    Article  CAS  Google Scholar 

  21. Cogan, N. et al. Mutat. Res. 683, 1–8 (2010).

    Article  CAS  Google Scholar 

  22. Hannemann, F. H. A. et al. Orthopaed. Traumatol. Surg. Res. 99, 263–271 (2013).

    Article  CAS  Google Scholar 

  23. Nanotechnology in Medical Applications: The Global Market Report code: HLC069C (BCC Research, 2015); http://go.nature.com/svt6uT

  24. Ventola, C. L. Pharm. Therap. 37, 512–525 (2012).

    Google Scholar 

  25. Schütz, C. A., Juillerat-Jeanneret, L., Mueller, H., Lynch, I. & Riediker, M. Nanomedicine (Lond). 8, 449–467 (2013).

    Article  Google Scholar 

  26. Andrade, F. et al. Nanomedicine 11, 1621–1631 (2015).

    Article  CAS  Google Scholar 

  27. Li, X. et al. Nanomedicine 11, 1377–1385 (2015).

    Article  CAS  Google Scholar 

  28. Weir, A., Paul Westerhoff, P., Fabricius, L. & von Goetz, N. Environ. Sci. Technol. 46, 2242–2250 (2012).

    Article  CAS  Google Scholar 

  29. Harper, M. et al. J. Expo. Sci. Environ. Epidemiol. 25, 381–387 (2015).

    Article  Google Scholar 

  30. Jilka, S. R., Callahan, R., Sevdalis, N., Mayer, E. K. & Darzi, A. J. Med. Internet Res. 17, e161 (2015).

    Article  Google Scholar 

  31. Pautler, M. & Brenner, S. Int. J. Nanomed. 5, 803–809 (2010).

    Google Scholar 

  32. Armand, L. et al. Nanotoxicology 19, 1–33 (2016).

    Google Scholar 

  33. Kattlove, H. & Winn, R. J. CA Cancer J. Clin. 53, 172–196 (2003).

    Article  Google Scholar 

  34. Klompas, M., Yokoe, D. S. & Weinstein, R. A. Clin. Infect. Dis. 48, 1268–1275 (2009).

    Article  Google Scholar 

  35. Nanotechnology: Small Matter, Many Unknowns (SwissRe, 2004).

  36. Lloyd's Emerging Risks Team Nanotechnology. Recent Developments, Risks and Opportunities (Lloyd's, 2007).

  37. Mullins, M., Murphy, F., Baublyte, L., McAlea, E. M. & Tofail, S. A. Nature Nanotech. 8, 222–224 (2013).

    Article  CAS  Google Scholar 

  38. Ventola, C. L. Pharm. Therapeut. 37, 582–591 (2012).

    Google Scholar 

  39. Loubaton, B. Exploring the quantitative dimensions of the economic impact of nanomedicine. Int. Symp. on Assessing the Economic Impact of Nanotechnology (2012); http://go.nature.com/xBYZCS

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michaela Kendall or Iseult Lynch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kendall, M., Lynch, I. Long-term monitoring for nanomedicine implants and drugs. Nature Nanotech 11, 206–210 (2016). https://doi.org/10.1038/nnano.2015.341

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.341

  • Springer Nature Limited

This article is cited by

Navigation