Skip to main content

Advertisement

Log in

Differential control of presynaptic efficacy by postsynaptic N-cadherin and β-catenin

  • Article
  • Published:

From Nature Neuroscience

View current issue Submit your manuscript

Abstract

N-cadherin is a homophilic adhesion protein that remains expressed at mature excitatory synapses beyond its developmental role in synapse formation. We investigated the trans-synaptic activity of N-cadherin in regulating synapse function in rodent cultured hippocampal neurons using optical methods and electrophysiology. Interfering with N-cadherin in postsynaptic neurons reduced basal release probability (pr) at inputs to the neuron, and this trans-synaptic impairment of release accompanied impaired vesicle endocytosis. Moreover, loss of the GluA2 AMPA-type glutamate receptor subunit, which decreased pr by itself, occluded the interference with postsynaptic N-cadherin. The loss of postsynaptic N-cadherin activity, however, did not affect the compensatory upregulation of pr induced by chronic activity silencing, whereas postsynaptic β-catenin deletion blocked this presynaptic homeostatic adaptation. Our findings suggest that postsynaptic N-cadherin helps link basal pre- and postsynaptic strengths to control the pr offset, whereas the pr gain adjustment requires a distinct trans-synaptic pathway involving β-catenin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Postsynaptic expression of DN-NCad decreases presynaptic proteins.
Figure 2: Ultrastructural analysis of synaptic vesicle distribution.
Figure 3: Disrupting postsynaptic N-cadherin activity decreases the size of the recycling synaptic vesicle pool.
Figure 4: Postsynaptic N-cadherin modulates neurotransmitter release probability.
Figure 5: Presynaptic disruption of N-cadherin activity does not affect neurotransmitter release.
Figure 6: GluA2 is a possible effector of the trans-synaptic regulation of release by N-cadherin.
Figure 7: N-cadherin and β-catenin are differentially required for homeostatic regulation of release probability.
Figure 8: Disrupting postsynaptic N-cadherin activity affects synaptic vesicle endocytosis.

Similar content being viewed by others

References

  1. Togashi, H. et al. Interneurite affinity is regulated by heterophilic nectin interactions in concert with the cadherin machinery. J. Cell Biol. 174, 141–151 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Abe, K., Chisaka, O., Van Roy, F. & Takeichi, M. Stability of dendritic spines and synaptic contacts is controlled by alpha N-catenin. Nat. Neurosci. 7, 357–363 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Bamji, S.X. et al. Role of beta-catenin in synaptic vesicle localization and presynaptic assembly. Neuron 40, 719–731 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Murase, S., Mosser, E. & Schuman, E.M. Depolarization drives beta-Catenin into neuronal spines promoting changes in synaptic structure and function. Neuron 35, 91–105 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Okuda, T., Yu, L.M., Cingolani, L.A., Kemler, R. & Goda, Y. beta-Catenin regulates excitatory postsynaptic strength at hippocampal synapses. Proc. Natl. Acad. Sci. USA 104, 13479–13484 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tang, L., Hung, C.P. & Schuman, E.M. A role for the cadherin family of cell adhesion molecules in hippocampal long-term potentiation. Neuron 20, 1165–1175 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Bozdagi, O. et al. Persistence of coordinated long-term potentiation and dendritic spine enlargement at mature hippocampal CA1 synapses requires N-cadherin. J. Neurosci. 30, 9984–9989 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mendez, P., De Roo, M., Poglia, L., Klauser, P. & Muller, D. N-cadherin mediates plasticity-induced long-term spine stabilization. J. Cell Biol. 189, 589–600 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Saglietti, L. et al. Extracellular interactions between GluR2 and N-cadherin in spine regulation. Neuron 54, 461–477 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Jüngling, K. et al. N-cadherin transsynaptically regulates short-term plasticity at glutamatergic synapses in embryonic stem cell-derived neurons. J. Neurosci. 26, 6968–6978 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Stan, A. et al. Essential cooperation of N-cadherin and neuroligin-1 in the transsynaptic control of vesicle accumulation. Proc. Natl. Acad. Sci. USA 107, 11116–11121 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hessler, N.A., Shirke, A.M. & Malinow, R. The probability of transmitter release at a mammalian central synapse. Nature 366, 569–572 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Murthy, V.N., Sejnowski, T.J. & Stevens, C.F. Heterogeneous release properties of visualized individual hippocampal synapses. Neuron 18, 599–612 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Rosenmund, C., Clements, J.D. & Westbrook, G.L. Nonuniform probability of glutamate release at a hippocampal synapse. Science 262, 754–757 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Pang, Z.P. & Sudhof, T.C. Cell biology of Ca2+-triggered exocytosis. Curr. Opin. Cell Biol. 22, 496–505 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zucker, R.S. & Regehr, W.G. Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Branco, T., Staras, K., Darcy, K.J. & Goda, Y. Local dendritic activity sets release probability at hippocampal synapses. Neuron 59, 475–485 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Frank, C.A., Kennedy, M.J., Goold, C.P., Marek, K.W. & Davis, G.W. Mechanisms underlying the rapid induction and sustained expression of synaptic homeostasis. Neuron 52, 663–677 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jakawich, S.K. et al. Local presynaptic activity gates homeostatic changes in presynaptic function driven by dendritic BDNF synthesis. Neuron 68, 1143–1158 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lindskog, M. et al. Postsynaptic GluA1 enables acute retrograde enhancement of presynaptic function to coordinate adaptation to synaptic inactivity. Proc. Natl. Acad. Sci. USA 107, 21806–21811 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Frank, C.A., Pielage, J. & Davis, G.W. A presynaptic homeostatic signaling system composed of the Eph receptor, ephexin, Cdc42, and CaV2.1 calcium channels. Neuron 61, 556–569 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Futai, K. et al. Retrograde modulation of presynaptic release probability through signaling mediated by PSD-95-neuroligin. Nat. Neurosci. 10, 186–195 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ryan, T.A., Reuter, H. & Smith, S.J. Optical detection of a quantal presynaptic membrane turnover. Nature 388, 478–482 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Tokuoka, H. & Goda, Y. Activity-dependent coordination of presynaptic release probability and postsynaptic GluR2 abundance at single synapses. Proc. Natl. Acad. Sci. USA 105, 14656–14661 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Takeichi, M. Cadherins: a molecular family important in selective cell-cell adhesion. Annu. Rev. Biochem. 59, 237–252 (1990).

    Article  CAS  PubMed  Google Scholar 

  26. Brault, V. et al. Inactivation of the beta-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development. Development 128, 1253–1264 (2001).

    CAS  PubMed  Google Scholar 

  27. Passafaro, M., Nakagawa, T., Sala, C. & Sheng, M. Induction of dendritic spines by an extracellular domain of AMPA receptor subunit GluR2. Nature 424, 677–681 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Ripley, B., Otto, S., Tiglio, K., Williams, M.E. & Ghosh, A. Regulation of synaptic stability by AMPA receptor reverse signaling. Proc. Natl. Acad. Sci. USA 108, 367–372 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Song, J.Y., Ichtchenko, K., Sudhof, T.C. & Brose, N. Neuroligin 1 is a postsynaptic cell-adhesion molecule of excitatory synapses. Proc. Natl. Acad. Sci. USA 96, 1100–1105 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Burrone, J. & Murthy, V.N. Synaptic gain control and homeostasis. Curr. Opin. Neurobiol. 13, 560–567 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Pozo, K. & Goda, Y. Unraveling mechanisms of homeostatic synaptic plasticity. Neuron 66, 337–351 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Turrigiano, G.G. The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 135, 422–435 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Burrone, J., O'Byrne, M. & Murthy, V.N. Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons. Nature 420, 414–418 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Han, E.B. & Stevens, C.F. Development regulates a switch between post- and presynaptic strengthening in response to activity deprivation. Proc. Natl. Acad. Sci. USA 106, 10817–10822 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nakayama, K., Kiyosue, K. & Taguchi, T. Diminished neuronal activity increases neuron-neuron connectivity underlying silent synapse formation and the rapid conversion of silent to functional synapses. J. Neurosci. 25, 4040–4051 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wierenga, C.J., Walsh, M.F. & Turrigiano, G.G. Temporal regulation of the expression locus of homeostatic plasticity. J. Neurophysiol. 96, 2127–2133 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Bredt, D.S. & Nicoll, R.A. AMPA receptor trafficking at excitatory synapses. Neuron 40, 361–379 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Newpher, T.M. & Ehlers, M.D. Glutamate receptor dynamics in dendritic microdomains. Neuron 58, 472–497 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sheng, M. & Hoogenraad, C.C. The postsynaptic architecture of excitatory synapses: a more quantitative view. Annu. Rev. Biochem. 76, 823–847 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Sutton, M.A. & Schuman, E.M. Dendritic protein synthesis, synaptic plasticity, and memory. Cell 127, 49–58 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Thiagarajan, T.C., Lindskog, M. & Tsien, R.W. Adaptation to synaptic inactivity in hippocampal neurons. Neuron 47, 725–737 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Cingolani, L.A. et al. Activity-dependent regulation of synaptic AMPA receptor composition and abundance by beta3 integrins. Neuron 58, 749–762 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gainey, M.A., Hurvitz-Wolff, J.R., Lambo, M.E. & Turrigiano, G.G. Synaptic scaling requires the GluR2 subunit of the AMPA receptor. J. Neurosci. 29, 6479–6489 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wierenga, C.J., Ibata, K. & Turrigiano, G.G. Postsynaptic expression of homeostatic plasticity at neocortical synapses. J. Neurosci. 25, 2895–2905 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nuriya, M. & Huganir, R.L. Regulation of AMPA receptor trafficking by N-cadherin. J. Neurochem. 97, 652–661 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Cathala, L., Holderith, N.B., Nusser, Z., DiGregorio, D.A. & Cull-Candy, S.G. Changes in synaptic structure underlie the developmental speeding of AMPA receptor-mediated EPSCs. Nat. Neurosci. 8, 1310–1318 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Ryan, T.A. et al. The kinetics of SV recycling measured at single presynaptic boutons. Neuron 11, 713–724 (1993).

    Article  CAS  PubMed  Google Scholar 

  48. Arikkath, J. & Reichardt, L.F. Cadherins and catenins at synapses: roles in synaptogenesis and synaptic plasticity. Trends Neurosci. 31, 487–494 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gottmann, K. Transsynaptic modulation of the synaptic vesicle cycle by cell-adhesion molecules. J. Neurosci. Res. 86, 223–232 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Tanaka, H. et al. Molecular modification of N-cadherin in response to synaptic activity. Neuron 25, 93–107 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Kemler (Max Planck Institute of Immunology) for β-catenin floxed mice, T. Okuda (Keio University) and M. Passafaro (University of Milan) for sharing plasmids, D. Elliott for expert technical assistance and the members of the Goda laboratory for discussions. This work was supported by the UK Medical Research Council, the European Union 7th Framework Program EUROSPIN project and the RIKEN Brain Science Institute.

Author information

Authors and Affiliations

Authors

Contributions

N.V. performed all of the experimental work. M.L. contributed electrophysiology experiments and discussion, and I.J.W. performed electron microscopy. N.V. and Y.G. designed the project and wrote the manuscript.

Corresponding author

Correspondence to Yukiko Goda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 1251 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vitureira, N., Letellier, M., White, I. et al. Differential control of presynaptic efficacy by postsynaptic N-cadherin and β-catenin. Nat Neurosci 15, 81–89 (2012). https://doi.org/10.1038/nn.2995

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2995

  • Springer Nature America, Inc.

This article is cited by

Navigation