Skip to main content
Log in

Differential roles of human striatum and amygdala in associative learning

  • Brief Communication
  • Published:

From Nature Neuroscience

View current issue Submit your manuscript

Abstract

Although the human amygdala and striatum have both been implicated in associative learning, only the striatum's contribution has been consistently computationally characterized. Using a reversal learning task, we found that amygdala blood oxygen level–dependent activity tracked associability as estimated by a computational model, and dissociated it from the striatal representation of reinforcement prediction error. These results extend the computational learning approach from striatum to amygdala, demonstrating their complementary roles in aversive learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Experimental design and behavioral model fit.
Figure 2: Neural correlates of associability and prediction error term.

Similar content being viewed by others

References

  1. Schultz, W., Dayan, P. & Montague, P.R. Science 275, 1593–1599 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. O'Doherty, J.P., Dayan, P., Friston, K., Critchley, H. & Dolan, R.J. Neuron 38, 329–337 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Delgado, M.R., Li, J., Schiller, D. & Phelps, E.A. Phil. Trans. R. Soc. Lond. B 363, 3787–3800 (2008).

    Article  Google Scholar 

  4. Davis, M. & Whalen, P.J. Mol. Psychiatry 6, 13–34 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Phelps, E.A. in The Human Amygdala (eds. Whalen, P. & Phelps, E.) 204–219 (Guilford Press, New York, 2009).

  6. Pearce, J.M. & Hall, G. Psychol. Rev. 87, 532–552 (1980).

    Article  CAS  PubMed  Google Scholar 

  7. Holland, P.C. & Gallagher, M. Trends Cogn. Sci. 3, 65–73 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Roesch, M.R., Calu, D.J., Esber, G.R. & Schoenbaum, G. J. Neurosci. 30, 2464–2471 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Belova, M.A., Paton, J.J., Morrison, S.E. & Salzman, C.D. Neuron 55, 970–984 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Schiller, D., Levy, I., Niv, Y., LeDoux, J.E. & Phelps, E.A. J. Neurosci. 28, 11517–11525 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Courville, A.C., Daw, N.D. & Touretzky, D.S. Trends Cogn. Sci. 10, 294–300 (2006).

    Article  PubMed  Google Scholar 

  12. Preuschoff, K. & Bossaerts, P. Ann. NY Acad. Sci. 1104, 135–146 (2007).

    Article  PubMed  Google Scholar 

  13. Behrens, T.E.J., Woolrich, M.W., Walton, M.E. & Rushworth, M.F.S. Nat. Neurosci. 10, 1214–1221 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Robbins, T.W., Cador, M., Taylor, J.R. & Everitt, B.J. Neurosci. Biobehav. Rev. 13, 155–162 (1989).

    Article  CAS  PubMed  Google Scholar 

  15. Baxter, M.G. & Murray, E.A. Nat. Rev. Neurosci. 3, 563–573 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Glimcher, R. Rutledge and E. DeWitt for discussions and comments. This research was supported by a McKnight Foundation Scholar Award, Human Frontiers Science Program grant RGP0036/2009-C, US National Institutes of Health (NIH) grant MH087882 (part of the CRCNS program, to N.D.D.), a James S. McDonnell Foundation grant and NIH grant MH080756 to E.A.P., and NIH grants DA015718 and AG027097 to G.S. This work was also supported by a Seaver Foundation grant to the Center for Brain Imaging.

Author information

Authors and Affiliations

Authors

Contributions

E.A.P. and D.S. designed the study and conducted the experiment. J.L. and N.D.D. performed the data analysis. J.L., D.S., G.S., E.A.P. and N.D.D. interpreted the data and wrote the manuscript.

Corresponding author

Correspondence to Jian Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3, Supplementary Tables 1–5 and Supplementary Methods (PDF 3279 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Schiller, D., Schoenbaum, G. et al. Differential roles of human striatum and amygdala in associative learning. Nat Neurosci 14, 1250–1252 (2011). https://doi.org/10.1038/nn.2904

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2904

  • Springer Nature America, Inc.

This article is cited by

Navigation