Skip to main content

Advertisement

Log in

Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri

  • Brief Communication
  • Published:

From Nature Neuroscience

View current issue Submit your manuscript

Abstract

The introduction of two microbial opsin–based tools, channelrhodopsin-2 (ChR2) and halorhodopsin (NpHR), to neuroscience has generated interest in fast, multimodal, cell type–specific neural circuit control. Here we describe a cation-conducting channelrhodopsin (VChR1) from Volvox carteri that can drive spiking at 589 nm, with excitation maximum red-shifted ∼70 nm compared with ChR2. These results demonstrate fast photostimulation with yellow light, thereby defining a functionally distinct third category of microbial rhodopsin proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Identification and characterization of VChR1.
Figure 2: VChR1 permits red-shifted neural photostimulation.
Figure 3: Separable channels of optogenetic excitation.

Similar content being viewed by others

References

  1. Zhang, F. et al. Nature 446, 633–639 (2007).

    Article  CAS  Google Scholar 

  2. Adamantidis, A.R., Zhang, F., Aravanis, A.M., Deisseroth, K. & de Lecea, L. Nature 450, 420–424 (2007).

    Article  CAS  Google Scholar 

  3. Nagel, G. et al. Proc. Natl. Acad. Sci. USA 100, 13940–13945 (2003).

    Article  CAS  Google Scholar 

  4. Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Nat. Neurosci. 8, 1263–1268 (2005).

    Article  CAS  Google Scholar 

  5. Bi, A. et al. Neuron 50, 23–33 (2006).

    Article  CAS  Google Scholar 

  6. Li, X. et al. Proc. Natl. Acad. Sci. USA 102, 17816–17821 (2005).

    Article  CAS  Google Scholar 

  7. Ernst, O.P. et al. J. Biol. Chem. 283, 1637–1643 (2008).

    Article  CAS  Google Scholar 

  8. Bamann, C., Kirsch, T., Nagel, G. & Bamberg, E. J. Mol. Biol. 375, 686–694 (2008).

    Article  CAS  Google Scholar 

  9. Nagel, G. et al. Science 296, 2395–2398 (2002).

    Article  CAS  Google Scholar 

  10. Hegemann, P., Ehlenbeck, S. & Gradmann, D. Biophys. J. 89, 3911–3918 (2005).

    Article  CAS  Google Scholar 

  11. Kloppmann, E., Becker, T. & Ullmann, G.M. Proteins 61, 953–965 (2005).

    Article  CAS  Google Scholar 

  12. Hoffmann, M. et al. J. Am. Chem. Soc. 128, 10808–10818 (2006).

    Article  CAS  Google Scholar 

  13. Gradinaru, V. et al. J. Neurosci. 27, 14231–14238 (2007).

    Article  CAS  Google Scholar 

  14. Aravanis, A. et al. J. Neural Eng. 4, S143–S156 (2007).

    Article  Google Scholar 

  15. Venter, J.C. et al. Science 304, 66–74 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

F.Z. is supported by the US National Institutes of Health, F.B. by the Erasmus Program and O.Y. by the European Molecular Biology Organization. K.D. is supported by the California Institute of Regenerative Medicine and the Snyder, Coulter, McKnight and Albert Yu Foundations, as well as by the US National Science Foundation and US National Institutes of Health. P.H. is supported by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter Hegemann or Karl Deisseroth.

Supplementary information

Supplementary Text and Figures

Supplementary Methods (PDF 118 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, F., Prigge, M., Beyrière, F. et al. Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat Neurosci 11, 631–633 (2008). https://doi.org/10.1038/nn.2120

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2120

  • Springer Nature America, Inc.

This article is cited by

Navigation