Skip to main content
Log in

Gene synthesis by circular assembly amplification

  • Brief Communication
  • Published:

From Nature Methods

View current issue Submit your manuscript

Abstract

Here we report the development of a gene-synthesis technology, circular assembly amplification. In this approach, we first constructed exonuclease-resistant circular DNA via simultaneous ligation of oligonucleotides. Exonuclease- and subsequent mismatch cleaving endonuclease–mediated degradation of the resulting ligation mixture eliminated error-rich products, thereby substantially improving gene-synthesis quality. We used this method to construct genes encoding a small thermostable DNA polymerase, a highly repetitive DNA sequence and large (>4 kb) constructs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Schematic representation of circular assembly amplification.
Figure 2: Dpo4 gene constructed by circular assembly amplification of 48 oligonucleotides.
Figure 3: Circular assembly amplification for the synthesis of Pfu DNA polymerase.

Similar content being viewed by others

References

  1. Menzella, H.G. et al. Nat. Biotechnol. 23, 1171–1176 (2005).

    Article  CAS  Google Scholar 

  2. Han, J.S. & Boeke, J.D. Nature 429, 314–318 (2004).

    Article  CAS  Google Scholar 

  3. Stemmer, W.P., Crameri, A., Ha, K.D., Brennan, T.M. & Heyneker, H.L. Gene 164, 49–53 (1995).

    Article  CAS  Google Scholar 

  4. Smith, H.O., Hutchison, C.A., III, Pfannkoch, C. & Venter, J.C. Proc. Natl. Acad. Sci. USA 100, 15440–15445 (2003).

    Article  CAS  Google Scholar 

  5. Tian, J. et al. Nature 432, 1050–1054 (2004).

    Article  CAS  Google Scholar 

  6. Kodumal, S.J. et al. Proc. Natl. Acad. Sci. USA 101, 15573–15578 (2004).

    Article  CAS  Google Scholar 

  7. Xiong, A.S. et al. Nucleic Acids Res. 32, e98 (2004).

    Article  Google Scholar 

  8. Fuhrmann, M., Oertel, W., Berthold, P. & Hegemann, P. Nucleic Acids Res. 33, e58 (2005).

    Article  Google Scholar 

  9. Young, L. & Dong, Q. Nucleic Acids Res. 32, e59 (2004).

    Article  Google Scholar 

  10. Carr, P.A. et al. Nucleic Acids Res. 32, e162 (2004).

    Article  Google Scholar 

  11. Ling, H., Boudsocq, F., Woodgate, R. & Yang, W. Cell 107, 91–102 (2001).

    Article  CAS  Google Scholar 

  12. Richardson, S.M., Wheelan, S.J., Yarrington, R.M. & Boeke, J.D. Genome Res. 16, 550–556 (2006).

    Article  CAS  Google Scholar 

  13. SantaLucia, J., Jr. Proc. Natl. Acad. Sci. USA 95, 1460–1465 (1998).

    Article  CAS  Google Scholar 

  14. Geu-Flores, F., Nour-Eldin, H.H., Nielsen, M.T. & Halkier, B.A. Nucleic Acids Res. 35, e55 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Umbarger, M. Price and J. Aach for critical comments on the manuscript; F. Issacs for comments on experimental design; an anonymous reviewer's suggestion to test repetitive DNA sequence synthesis. We acknowledge funding from US Department of Energy for GTL Center support. D.B is a Damon Runyon Fellow supported by the Damon Runyon Cancer Research Foundation (DRG#1911-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duhee Bang.

Ethics declarations

Competing interests

G.M.C. is a scientific advisory board member of Codon Devices.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Table 1, Supplementary Methods (PDF 1555 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bang, D., Church, G. Gene synthesis by circular assembly amplification. Nat Methods 5, 37–39 (2008). https://doi.org/10.1038/nmeth1136

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth1136

  • Springer Nature America, Inc.

This article is cited by

Navigation