Skip to main content

Advertisement

Log in

Determination of the sites of tyrosine O-sulfation in peptides and proteins

  • Article
  • Published:

From Nature Methods

View current issue Submit your manuscript

Abstract

Tyrosine O-sulfation is a key post-translational modification that regulates protein-protein interactions in extracellular space. We describe a subtractive strategy to determine the sites of tyrosine O-sulfation in proteins. Hydroxyl groups on unsulfated tyrosines are blocked by stoichiometric acetylation in a one-step reaction using sulfosuccinimidyl acetate (S-NHSAc) in the presence of imidazole at pH 7.0. The presence of sulfotyrosine is indicated by the detection of free tyrosine after tandem mass spectrometry (MS/MS) analysis under conditions in which the sulfuryl group of sulfotyrosine is labile. Since phosphorylation and sulfation of tyrosine are isobaric, we used alkaline phosphatase treatment to distinguish these two modifications. Using this methodology we identified the sites and the order of sulfation of several peptides mediated by purified human tyrosylprotein sulfotransferases (TPSTs), and unambiguously determined the tyrosine sulfation sites in mouse lumican and human vitronectin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Overall subtractive strategy for site determination of protein tyrosine sulfation.
Figure 2: Determination of the site of sulfation in Tyr9-CCK-8.
Figure 3: RP-HPLC analysis of the sulfated CCR8 12–20 peptides generated in vitro by TPST-1 and TPST-2.
Figure 4: Identification of the sites of sulfation in lumican.
Figure 5: Identification of the sites of sulfation in lumican peptide Met29–Tyr52.

Similar content being viewed by others

References

  1. Huttner, W.B. Sulphation of tyrosine residues-a widespread modification of proteins. Nature 299, 273–276 (1982).

    Article  CAS  Google Scholar 

  2. Kehoe, J.W. & Bertozzi, C.R. Tyrosine sulfation: a modulator of extracellular protein-protein interactions. Chem. Biol. 7, R57–R61 (2000).

    Article  CAS  Google Scholar 

  3. Moore, K.L. The biology and enzymology of protein tyrosine O-sulfation. J. Biol. Chem. 278, 24243–24246 (2003).

    Article  CAS  Google Scholar 

  4. Ouyang, Y., Lane, W.S. & Moore, K.L. Tyrosylprotein sulfotransferase: purification and molecular cloning of an enzyme that catalyzes tyrosine O-sulfation, a common posttranslational modification of eukaryotic proteins. Proc. Natl. Acad. Sci. USA 95, 2896–2901 (1998).

    Article  CAS  Google Scholar 

  5. Beisswanger, R. et al. Existence of distinct tyrosylprotein sulfotransferase genes: molecular characterization of tyrosylprotein sulfotransferase-2. Proc. Natl. Acad. Sci. USA 95, 11134–11139 (1998).

    Article  CAS  Google Scholar 

  6. Ouyang, Y.B. & Moore, K.L. Molecular cloning and expression of human and mouse tyrosylprotein sulfotransferase-2 and a tyrosylprotein sulfotransferase homologue in Caenorhabditis elegans . J. Biol. Chem. 273, 24770–24774 (1998).

    Article  CAS  Google Scholar 

  7. Baeuerle, P.A. & Huttner, W.B. Tyrosine sulfation is a trans-Golgi–specific protein modification. J. Cell Biol. 105, 2655–2664 (1987).

    Article  CAS  Google Scholar 

  8. Huttner, W.B. Tyrosine sulfation and the secretory pathway. Annu. Rev. Physiol. 50, 363–376 (1988).

    Article  CAS  Google Scholar 

  9. Rosen, S.D. Ligands for L-selectin: homing, inflammation, and beyond. Annu. Rev. Immunol. 22, 129–156 (2004).

    Article  CAS  Google Scholar 

  10. Farzan, M. et al. Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV-1 entry. Cell 96, 667–676 (1999).

    Article  CAS  Google Scholar 

  11. Farzan, M. et al. The role of post-translational modifications of the CXCR4 amino terminus in stromal-derived factor 1 alpha association and HIV-1 entry. J. Biol. Chem. 277, 29484–29489 (2002).

    Article  CAS  Google Scholar 

  12. Hemmerich, S. et al. Identification of residues in the monocyte chemotactic protein-1 that contact the MCP-1 receptor, CCR2. Biochemistry 38, 13013–13025 (1999).

    Article  CAS  Google Scholar 

  13. Pouyani, T. & Seed, B. PSGL-1 recognition of P-selectin is controlled by a tyrosine sulfation consensus at the PSGL-1 amino terminus. Cell 83, 333–343 (1995).

    Article  CAS  Google Scholar 

  14. Leppanen, A. et al. A novel glycosulfopeptide binds to P-selectin and inhibits leukocyte adhesion to P-selectin. J. Biol. Chem. 274, 24838–24848 (1999).

    Article  CAS  Google Scholar 

  15. Somers, W.S., Tang, J., Shaw, G.D. & Camphausen, R.T. Insights into the molecular basis of leukocyte tethering and rolling revealed by structures of P- and E-selectin bound to SLe(X) and PSGL-1. Cell 103, 467–479 (2000).

    Article  CAS  Google Scholar 

  16. Huttner, W.B. Determination and occurrence of tyrosine O-sulfate in proteins. Methods Enzymol. 107, 200–223 (1984).

    Article  CAS  Google Scholar 

  17. McLachlin, D.T. & Chait, B.T. Analysis of phosphorylated proteins and peptides by mass spectrometry. Curr. Opin. Chem. Biol. 5, 591–602 (2001).

    Article  CAS  Google Scholar 

  18. Yu, Y., Ji, H., Doudna, J.A. & Leary, J.A. Mass spectrometric analysis of the human 40S ribosomal subunit: native and HCV IRES-bound complexes. Protein Sci. 14, 1438–1446 (2005).

    Article  CAS  Google Scholar 

  19. Kirkpatrick, D.S. et al. Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology. Nat. Cell Biol. 8, 700–710 (2006).

    Article  CAS  Google Scholar 

  20. Zhang, H., Li, X.J., Martin, D.B. & Aebersold, R. Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat. Biotechnol. 21, 660–666 (2003).

    Article  CAS  Google Scholar 

  21. Onnerfjord, P., Heathfield, T.F. & Heinegard, D. Identification of tyrosine sulfation in extracellular leucine-rich repeat proteins using mass spectrometry. J. Biol. Chem. 279, 26–33 (2004).

    Article  Google Scholar 

  22. Salek, M., Costagliola, S. & Lehmann, W.D. Protein tyrosine-O-sulfation analysis by exhaustive product ion scanning with minimum collision offset in a NanoESI Q-TOF tandem mass spectrometer. Anal. Chem. 76, 5136–5142 (2004).

    Article  CAS  Google Scholar 

  23. Mann, M., Hendrickson, R.C. & Pandey, A. Analysis of proteins and proteomes by mass spectrometry. Annu. Rev. Biochem. 70, 437–473 (2001).

    Article  CAS  Google Scholar 

  24. Jenne, D., Hille, A., Stanley, K.K. & Huttner, W.B. Sulfation of two tyrosine-residues in human complement S-protein (vitronectin). Eur. J. Biochem. 185, 391–395 (1989).

    Article  CAS  Google Scholar 

  25. Amano, Y., Shinohara, H., Sakagami, Y. & Matsubayashi, Y. Ion-selective enrichment of tyrosine-sulfated peptides from complex protein digests. Anal. Biochem. 346, 124–131 (2005).

    Article  CAS  Google Scholar 

  26. Liu, T. et al. Human plasma N-glycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry, and mass spectrometry. J. Proteome Res. 4, 2070–2080 (2005).

    Article  CAS  Google Scholar 

  27. Plummer, T.H., Elder, J.H., Alexander, S., Phelan, A.W. & Tarentino, A.L. Demonstration of peptide-N-glycosidase-F activity in endo-Beta-N-acetylglucosaminidase F preparations. J. Biol. Chem. 259, 700–704 (1984).

    Google Scholar 

  28. Niehrs, C., Kraft, M., Lee, R.W.H. & Huttner, W.B. Analysis of the substrate specificity of tyrosylprotein sulfotransferase using synthetic peptides. J. Biol. Chem. 265, 8525–8532 (1990).

    CAS  PubMed  Google Scholar 

  29. Seibert, C., Cadene, M., Sanfiz, A., Chait, B.T. & Sakmar, T.P. Tyrosine sulfation of CCR5 N-terminal peptide by tyrosylprotein sulfotransferases 1 and 2 follows a discrete pattern and temporal sequence. Proc. Natl. Acad. Sci. USA 99, 11031–11036 (2002).

    Article  CAS  Google Scholar 

  30. Budnik, B.A., Haselmann, K.F. & Zubarev, R.A. Electron detachment dissociation of peptide di-anions: an electron-hole recombination phenomenon. Chem. Phys. Lett. 342, 299–302 (2001).

    Article  CAS  Google Scholar 

  31. Borghei, A. et al. Targeted disruption of tyrosylprotein sulfotransferase-2, an enzyme that catalyzes post-translational protein tyrosine O-sulfation, causes male infertility. J. Biol. Chem. 281, 9423–9431 (2006).

    Article  CAS  Google Scholar 

  32. Ouyang, Y.B., Crawley, J.T.B., Aston, C.E. & Moore, K.L. Reduced body weight and increased postimplantation fetal death in tyrosylprotein sulfotransferase-1–deficient mice. J. Biol. Chem. 277, 23781–23787 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the US National Institutes of Health, grants GM 63581 to J.A.L. and HL 074015 to K.L.M. Y.Y. acknowledges M. Leavell, E. Damoc, C. Damoc and X. Li for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

Y.Y. and J.A.L. designed the research, Y.Y. acquired the data, A.J.H. and K.L.M. expressed and purified tyrosylprotein sulfotransferases, and Y.Y., K.L.M. and J.A.L. wrote the paper.

Corresponding author

Correspondence to Julie A Leary.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures and Text

Supplementary Figures 1-7, Supplementary Note. (PDF 798 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Y., Hoffhines, A., Moore, K. et al. Determination of the sites of tyrosine O-sulfation in peptides and proteins. Nat Methods 4, 583–588 (2007). https://doi.org/10.1038/nmeth1056

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth1056

  • Springer Nature America, Inc.

This article is cited by

Navigation