Skip to main content

Advertisement

Log in

A parallel microfluidic flow cytometer for high-content screening

  • Brief Communication
  • Published:

From Nature Methods

View current issue Submit your manuscript

Abstract

A parallel microfluidic cytometer (PMC) uses a high-speed scanning photomultiplier-based detector to combine low-pixel-count, one-dimensional imaging with flow cytometry. The 384 parallel flow channels of the PMC decouple count rate from signal-to-noise ratio. Using six-pixel one-dimensional images, we investigated protein localization in a yeast model for human protein misfolding diseases and demonstrated the feasibility of a nuclear-translocation assay in Chinese hamster ovary (CHO) cells expressing an NFκB-EGFP reporter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: High-content screening on a PMC.
Figure 2: Phenotyping α-Syn–GFP aggregation by PMC imaging.

Similar content being viewed by others

References

  1. Taylor, D.L., Haskins, J.R. & Giuliano, K.A. High Content Screening (Humana Press, 2007).

  2. De Vos, W.H., Van Neste, L., Dieriks, B., Joss, G.H. & Van Oostveldt, P. Cytometry A 77A, 64–75 (2010).

    Google Scholar 

  3. Perlman, Z.E. et al. Science 306, 1194–1198 (2004).

    Article  CAS  Google Scholar 

  4. Ng, A.Y.J. et al. J. Biomol. Screen 15, 858–868 (2010).

    Article  CAS  Google Scholar 

  5. Comeau, J.W.D., Costantino, S. & Wiseman, P.W. Biophys. J. 91, 4611–4622 (2006).

    Article  CAS  Google Scholar 

  6. Lapan, P. et al. PLoS 4, e6822 (2009).

    Article  Google Scholar 

  7. Feng, Y., Bender, T.J., Young, D.W. & Tallarico, J.A. Nat. Rev. Drug Discov. 8, 567–578 (2009).

    Article  CAS  Google Scholar 

  8. George, T.C., Fanning, S.L., Fitzgerald-Bocarsly, P. & Medeiros, R.B. J. Immunol. Methods 311, 117–129 (2006).

    Article  CAS  Google Scholar 

  9. McKenna, B.K., Salim, H., Bringhurst, F.R. & Ehrlich, D.J. Lab Chip 9, 305–310 (2009).

    Article  CAS  Google Scholar 

  10. Krishnan, R. & Lindquist, S.L. Nature 435, 765–772 (2005).

    Article  CAS  Google Scholar 

  11. Shorter, J. & Lindquist, S.L. Nat. Rev. Genet. 6, 435–450 (2005).

    Article  CAS  Google Scholar 

  12. Ding, G.J. et al. J. Biol. Chem. 273, 28897–28905 (1998).

    Article  CAS  Google Scholar 

  13. Schmid, J.A., Birbach, A. & Hofer-Warbinek, R. J. Biol. Chem. 275, 17035–17042 (2000).

    Article  CAS  Google Scholar 

  14. Bohm, S., Gilbert, J. & Deshpande, M. US patent 7,157,274 (2007).

Download references

Acknowledgements

We thank B. Bevis and S. Lindquist (Whitehead Institute) for helpful conversations and for supplying the S. cerevisiae samples. This work was supported by US National Institutes of Health (grant R01 HG-001389).

Author information

Authors and Affiliations

Authors

Contributions

B.K.M., J.G.E., M.C.C. and D.J.E. designed the research; B.K.M., M.C.C., J.G.E. and D.J.E. performed the engineering and experiments; B.K.M. and M.C.C. wrote analytical software and performed the data analysis; and all authors contributed to writing the paper.

Corresponding author

Correspondence to Daniel J Ehrlich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–14, Supplementary Table 1 (PDF 4763 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKenna, B., Evans, J., Cheung, M. et al. A parallel microfluidic flow cytometer for high-content screening. Nat Methods 8, 401–403 (2011). https://doi.org/10.1038/nmeth.1595

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1595

  • Springer Nature America, Inc.

This article is cited by

Navigation