Skip to main content
Log in

Electronic devices based on purified carbon nanotubes grown by high-pressure decomposition of carbon monoxide

  • Letter
  • Published:

From Nature Materials

View current issue Submit your manuscript

Abstract

The excellent properties of transistors, wires and sensors made from single-walled carbon nanotubes (SWNTs) make them promising candidates for use in advanced nanoelectronic systems1. Gas-phase growth procedures such as the high-pressure decomposition of carbon monoxide (HiPCO) method2,3 yield large quantities of small-diameter semiconducting SWNTs, which are ideal for use in nanoelectronic circuits. As-grown HiPCO material, however, commonly contains a large fraction of carbonaceous impurities that degrade the properties of SWNT devices4. Here we demonstrate a purification, deposition and fabrication process that yields devices consisting of metallic and semiconducting nanotubes with electronic characteristics vastly superior to those of circuits made from raw HiPCO. Source–drain current measurements on the circuits as a function of temperature and backgate voltage are used to quantify the energy gap of semiconducting nanotubes in a field-effect transistor geometry. This work demonstrates significant progress towards the goal of producing complex integrated circuits from bulk-grown SWNT material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: AFM images of devices made from purified HiPCO material.
Figure 2: Model of device energy bands.
Figure 3: IVg characteristics for device I.
Figure 4: IVg characteristics for device II.

Similar content being viewed by others

References

  1. McEuen, P. L. Single-wall carbon nanotubes. Phys. World 13, 31–36 (2000).

    Article  CAS  Google Scholar 

  2. Nikolaev, P. et al. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett. 313, 91–97 (1999).

    Article  CAS  Google Scholar 

  3. Bronikowski, M. J., Willis, P. A., Colbert, D. T., Smith, K. A. & Smalley, R. E. Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPCO process: A parametric study. J. Vac. Sci. Technol. A 19, 1800–1805 (2001).

    Article  CAS  Google Scholar 

  4. Antonov, R. D. & Johnson, A. T. Subband population in a single-wall carbon nanotube diode. Phys. Rev. Lett. 83, 3274–3276 (1999).

    Article  CAS  Google Scholar 

  5. Hafner, J. H., Cheung, C. L. & Lieber, C. M. Direct growth of single-walled carbon nanotube scanning probe microscopy tips. J. Am. Chem. Soc. 121, 9750–9751 (1999).

    Article  CAS  Google Scholar 

  6. Freitag, M., Johnson, A. T., Kalinin, S. V. & Bonnell, D. A. Role of single defects in electronic transport through carbon nanotube field-effect transistors. Phys. Rev. Lett. 89, 216801 (2002).

    Article  Google Scholar 

  7. Javey, A., Qi, P. F., Wang, Q. & Dai, H. J. Ten- to 50-nm-long quasi-ballistic carbon nanotube devices obtained without complex lithography. Proc. Natl Acad. Sci. USA 101, 13408–13410 (2004).

    Article  CAS  Google Scholar 

  8. Radosavljevic, M., Freitag, M., Thadani, K. V. & Johnson, A. T. Nonvolatile molecular memory elements based on ambipolar nanotube field effect transistors. Nano Lett. 2, 761–764 (2002).

    Article  CAS  Google Scholar 

  9. Mann, D., Javey, A., Kong, J., Wang, Q. & Dai, H. J. Ballistic transport in metallic nanotubes with reliable Pd ohmic contacts. Nano Lett. 3, 1541–1544 (2003).

    Article  CAS  Google Scholar 

  10. Bachilo, S. M. et al. Narrow (n,m) distribution of single-walled carbon nanotubes grown using a solid supported catalyst. J. Am. Chem. Soc. 125, 11186–11187 (2003).

    Article  CAS  Google Scholar 

  11. Islam, M. F., Rojas, E., Bergey, D. M., Johnson, A. T. & Yodh, A. G. High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett. 3, 269–273 (2003).

    Article  CAS  Google Scholar 

  12. Moore, V. C. et al. Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett. 3, 1379–1382 (2003).

    Article  CAS  Google Scholar 

  13. Zheng, M. et al. Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 302, 1545–1548 (2003).

    Article  CAS  Google Scholar 

  14. Zorbas, V. et al. Preparation and characterization of individual peptide-wrapped single-walled carbon nanotubes. J. Am. Chem. Soc. 126, 7222–7227 (2004).

    Article  CAS  Google Scholar 

  15. Liu, J. et al. Fullerene pipes. Science 280, 1253–1256 (1998).

    Article  CAS  Google Scholar 

  16. Doorn, S. K. et al. High resolution capillary electrophoresis of carbon nanotubes. J. Am. Chem. Soc. 124, 3169–3174 (2002).

    Article  CAS  Google Scholar 

  17. Krupke, R., Hennrich, F., Lohneysen, H. v. & Kappes, M. M. Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301, 344–347 (2003).

    Article  CAS  Google Scholar 

  18. Strano, M. S. et al. Electronic structure control of single-walled carbon nanotube functionalization. Science 301, 1519–1522 (2003).

    Article  CAS  Google Scholar 

  19. Liu, J. et al. Controlled deposition of individual single-walled carbon nanotubes on chemically functionalized templates. Chem. Phys. Lett. 303, 125–129 (1999).

    Article  CAS  Google Scholar 

  20. Rao, S. G., Huang, L., Setyawan, W. & Hong, S. Large-scale assembly of carbon nanotubes. Nature 425, 36–37 (2003).

    Article  CAS  Google Scholar 

  21. Islam, M. F., Milkie, D. E., Kane, C. L., Yodh, A. G. & Kikkawa, J. M. Direct measurement of the polarized optical absorption cross section of single-wall carbon nanotubes. Phys. Rev. Lett. 93, 037404 (2004).

    Article  CAS  Google Scholar 

  22. Islam, M. F., Milkie, D. E., Torrens, O. N., Yodh, A. G. & Kikkawa, J. M. Magnetic heterogeneity and alignment of single wall carbon nanotubes. Phys. Rev. B 71, 201401 (2005).

    Article  Google Scholar 

  23. Radosavljevic, M., Lefebvre, J. & Johnson, A. T. High-field electrical transport and breakdown in bundles of single-wall carbon nanotubes. Phys. Rev. B 64, 241307 (2001).

    Article  Google Scholar 

  24. Freitag, M., Radosavljevic, M., Zhou, Y. X., Johnson, A. T. & Smith, W. F. Controlled creation of a carbon nanotube diode by a scanned gate. Appl. Phys. Lett. 79, 3326–3328 (2001).

    Article  CAS  Google Scholar 

  25. Appenzeller, J. et al. Field-modulated carrier transport in carbon nanotube transistors. Phys. Rev. Lett. 89, 126801 (2002).

    Article  CAS  Google Scholar 

  26. Durkop, T., Getty, S. A., Cobas, E. & Fuhrer, M. S. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 4, 35–39 (2004).

    Article  Google Scholar 

  27. Heinze, S., Tersoff, J. & Avouris, P. Electrostatic engineering of nanotube transistors for improved performance. Appl. Phys. Lett. 83, 5038–5040 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.G.Y. acknowledges partial support from NSF DMR-0203378 and NASA (NAG8-2172). D.E.J. acknowledges support from NSF IGERT (DGE-0221664). A.G.Y. and A.T.J. acknowledge support from NSF MRSEC DMR-079909. A.T.J. acknowledges partial support from the Petroleum Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad F. Islam or Alan T. Johnson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary table S1 (PDF 44 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnston, D., Islam, M., Yodh, A. et al. Electronic devices based on purified carbon nanotubes grown by high-pressure decomposition of carbon monoxide. Nature Mater 4, 589–592 (2005). https://doi.org/10.1038/nmat1427

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1427

  • Springer Nature Limited

This article is cited by

Navigation