Skip to main content

Advertisement

Log in

Ribozyme rescue of photoreceptor cells in a transgenic rat model of autosomal dominant retinitis pigmentosa

  • Article
  • Published:

From Nature Medicine

View current issue Submit your manuscript

An Erratum to this article was published on 01 September 1998

Abstract

Ribozymes, catalytic RNA molecules that cleave a complementary mRNA sequence, have potential as therapeutics for dominantly inherited disease. Twelve percent of American patients with the blinding disease autosomal dominant retinitis pigmentosa (ADRP) carry a substitution of histidine for proline at codon 23 (P23H) in their rhodopsin gene1, resulting in photoreceptor cell death from the synthesis of the abnormal gene product. Ribozymes can discriminate and catalyze the in vitro destruction of P23H mutant mRNAs from a transgenic rat model of ADRP (ref. 2). Here, we demonstrate that in vivo expression of either a hammerhead or hairpin ribozyme in this rat model considerably slows the rate of photoreceptor degeneration for at least three months. Catalytically inactive control ribozymes had less effect on the retinal degeneration. Intracellular production of ribozymes in photoreceptors was achieved by transduction with a recombinant adeno-associated virus (rAAV) incorporating a rod opsin promoter. Ribozyme-directed cleavage of mutant mRNAs, therefore, may be an effective therapy for ADRP and also may be applicable to other inherited diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rosenfeld, P.J. & Dryja, T.P. in Molecular Genetics of Ocular Disease Vol. 1 (ed. Wiggs, J.L.) 99–126 (Wiley-Liss, New York, 1995).

    Google Scholar 

  2. Drenser, K.A., Timmers, A.M., Hauswirth, W.W. & Lewin, A.S. Ribozyme-targeted destruction of RNAs associated with ADRP. Inv. Ophthalmol. Vis. Sci. 39, 681–689 (1998).

    CAS  Google Scholar 

  3. Birikh, K.R., Heaton, P.A. & Eckstein, F. The structure, function and application of the hammerhead ribozyme. Eur. J. Biochem. 245, 1–16 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Rossi, J.J. Therapeutic applications of catalytic antisense RNAs (ribozymes). Ciba. Found. Symp. 209, 195–204 (1997).

    CAS  PubMed  Google Scholar 

  5. Lieber, A. & Kay, M.A. Adenovirus-mediated expression of ribozymes in mice. J. Virol. 70, 3153–3158 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. L'Huillier, P. et al. Efficient and specific ribozyme-mediated reduction of bovine alpha-lactalbumin expression in double transgenic mice. Proc. Natl. Acad. Sci. USA 93, 6698–6703 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Flannery, J.G. et al. Efficient photoreceptor-targeted gene expression in vivo by recombinant adeno-associated virus. Proc. Natl. Acad. Sci. USA 94, 6916–6921 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xiao, X., Li, J. & Samulski, R.J. Efficient long-term transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J. Virol. 70, 8098–8108 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Fisher, K.J. et al. Recombinant adeno-associated virus for muscle directed gene therapy. Nature Med. 3, 306–312 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Steinberg, R.H. et al. Transgenic rat models of inherited retinal degeneration caused by mutant opsin genes. Invest. Ophthalmol. Vis. Sci. 37, S698 (1996).

    Google Scholar 

  11. Michon, J.J., Li, Z.L., Shioura, N., Anderson, R.J. & Tso, M.O. A comparative study of methods of photoreceptor morphometry. Invest. Ophthalmol. Vis. Sci. 32, 280–284 (1991).

    CAS  PubMed  Google Scholar 

  12. Faktorovich, E.G. Steinberg, R.H., Yasumura, D., Matthes, M.T. & LaVail, M.M. Photoreceptor degeneration in inherited dystrophy delayed by the basic fibroblast growth factor. Nature 347, 83–86 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Wen, R. et al. Injury-induced upregulation of bFGF and CNTF mRNAS in the rat retina. J. Neurosci. 15, 7377–7385 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hormes, R. et al. The subcellular localization and length of hammerhead ribozymes determine efficacy in human cells. Nucleic Acids. Res. 25, 769–775 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Miyoshi, H., Takahashi, M., Gage, F.H. & Verma, I.M. Stable and efficient gene transfer into retina using an HIV-based lentiviral vector. Proc. Natl. Acad. Sci. 94, 10319–10323 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mohand-Said, S. et al. Photoreceptor transplants increase host cone survival in the retinal degeneration (rd) mouse. Ophthalmic Res. 29, 290–297 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Huang, P.C., Gaitan, A.E., Hao, Y., Petters, R.M. & Wong, F. Cellular interactions implicated in the mechanism of photoreceptor degeneration in transgenic mice expressing a mutant rhodopsin gene. Proc. Natl. Acad. Sci. USA 90, 8484–8488 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zolotukhin, S., Potter, M., Hauswirth, W.W., Guy, J. & Muzyczka, N. A “humanized” green fluorescent protein cDNA adapted for high-level expression in mammalian cells. J. Virol. 70, 4646–4654 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Deslardin, L.E. & Hauswirth, W.W. Developmentally important elements within the bovine opsin upstream region. Invest. Ophthalmol. Vis. Sci. 37, 154–165 (1996).

    Google Scholar 

  20. Altschuler, M., Tritz, R. & Hampel, A. A method for generating transcripts with defined 5′ and 3′ ermini by autolytic processing. Gene 122, 85–90 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Bertrand, E. et al. The expression cassette determines the functional activity of ribozymes in mammalian cells by controlling their intracellular localization. RNA 3, 75–88 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. LaVail, M.M. & Battelle, B.A. Influence of eye pigmentation and light deprivation on inherited retinal dystrophy in the rat. Exp. Eye Res. 21, 167–192 (1975).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewin, A., Drenser, K., Hauswirth, W. et al. Ribozyme rescue of photoreceptor cells in a transgenic rat model of autosomal dominant retinitis pigmentosa. Nat Med 4, 967–971 (1998). https://doi.org/10.1038/nm0898-967

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0898-967

  • Springer Nature America, Inc.

This article is cited by

Navigation