Skip to main content

Advertisement

Log in

Chromosomal translocation products engender new intracellular therapeutic technologies

  • Commentary
  • Published:

From Nature Medicine

View current issue Submit your manuscript

Chromosomal translocations occur in leukemias, lymphomas, sarcomas and some epithelial tumors and some generate unique fusion proteins. These translocation products may provide tumor-specific targets for the development of new therapeutic strategies tailored to a malignant cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Consequences of chromosomal translocations in human tumors.
Figure 2: Intracellular therapy strategies for products of chromosomal translocations.
Figure 3: Mouse models of chromosomal translocation are essential for objective assessment of potential therapeutic reagents before clinical application.

References

  1. Rabbitts, T.H. Chromosomal translocations in human cancer. Nature 372, 143–149 (1994).

    Article  CAS  Google Scholar 

  2. Pabo, C.O., Peisach, E. & Grant, R.A. Design and selection of novel Cys2His2 zinc finger proteins. Ann. Rev. Biochem. 70, 313–340 (2001).

    Article  CAS  Google Scholar 

  3. Gottesfeld, J.M., Neely, L., Trauger, J.W., Baird, E.E. & Dervan, P.B. Regulation of gene expression by small molecules. Nature 387, 202–205 (1997).

    Article  CAS  Google Scholar 

  4. Stocks, M.R. & Rabbitts, T.H. Masked antisense: a molecular configuration for discriminating similar RNA targets. EMBO Reports 11, 59–64 (2000).

    Article  Google Scholar 

  5. Kuwabara, T. et al. A novel allosterically trans-activated ribozyme, the maxizyme, with exceptional specificity in vitro and in vivo. Mol. Cell 2, 617–627 (1998).

    Article  CAS  Google Scholar 

  6. Ullu, E., Djikeng, A., Shi, H. & Tschudi, C. RNA interference: advances and questions. Philos. Trans. R. Soc. Lond. B Biol. Sci. 357, 65–70 (2002).

    Article  CAS  Google Scholar 

  7. Pinilla-Ibarz, J., Cathcart, K. & Scheinberg, D.A. CML vaccines as a paradigm of the specific immunotherapy of cancer. Blood Rev. 14, 111–120 (2000).

    Article  CAS  Google Scholar 

  8. Druker, B. Signal transduction inhibition: results from phase I clinical trials in chronic myeloid leukemia. Semin. Hematol. 38, 9–14 (2001).

    Article  CAS  Google Scholar 

  9. Cattaneo, A. & Biocca, S. The selection of intracellular antibodies. Trends Biotech. 17, 115–121 (1999).

    Article  CAS  Google Scholar 

  10. Tanaka, T. & Rabbitts, T.H. Intrabodies based on intracellular capture frameworks that bind the RAS protein with high affinity and impair oncogenic transformation. EMBO J. (in the press).

  11. Geyer, C.R. & Brent, R. Selection of genetic agents from random peptide aptamer expression libraries. Methods Enzymol. 328, 171–208 (2000).

    Article  CAS  Google Scholar 

  12. He, L.Z. et al. Distinct interactions of PML-RARα and PLZF-RARα with co-repressors determine differential responses to RA in APL. Nat. Genet. 18, 126–135 (1998).

    Article  CAS  Google Scholar 

  13. Adams, J.M. & Cory, S. Transgenic models of tumor development. Science 254, 1161–1167 (1991).

    Article  CAS  Google Scholar 

  14. Ayton, P.M. & Cleary, M.L. Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene Rev. 20, 5695–5707 (2001).

    Article  CAS  Google Scholar 

  15. Yergeau, D.A. et al. Embryonic lethality and impairment of haematopoiesis in mice heterozygous for an AML1-ETO fusion gene. Nat. Genet. 15, 303–306 (1997).

    Article  CAS  Google Scholar 

  16. Buchholz, F., Refaeli, Y., Trumpp, A. & Bishop, J.M. Inducible chromosomal translocation of AML1 and ETO genes through Cre/loxP-mediated recombination in the mouse. EMBO Reports 1, 133–139 (2000).

    Article  CAS  Google Scholar 

  17. Collins, E.C., Pannell, R., Simpson, E.M., Forster, A. & Rabbitts, T.H. Inter-chromosomal recombination of Mll and Af9 genes mediated by cre-loxP in mouse development. EMBO Reports 1, 127–132 (2000).

    Article  CAS  Google Scholar 

  18. Higuchi, M. et al. Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell 1, 63–74 (2002).

    Article  CAS  Google Scholar 

  19. Tse, E. & Rabbitts, T.H. Intracellular antibody-caspase mediated cell killing: a novel approach for application in cancer therapy. Proc. Natl. Acad. Sci. USA 97, 12266–12271 (2000).

    Article  CAS  Google Scholar 

  20. Elliott, G. & O'Hare, P. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 88, 223–233 (1997).

    Article  CAS  Google Scholar 

  21. Derossi, D., Chassaing, G. & Prochiantz, A. Trojan peptides: the penetratin system for intracellular delivery. Trends Cell Biol. 8, 84–87 (1998).

    Article  CAS  Google Scholar 

  22. Becker-Hapak, M., McAllister, S.S. & Dowdy, S.F. TAT-mediated protein transduction into mammalian cells. Methods 24, 247–256 (2001).

    Article  CAS  Google Scholar 

  23. Darnell, J.E. Transcription factors as targets for cancer therapy. Nat. Rev. Cancer 2, 740–749 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terence H. Rabbitts.

Ethics declarations

Competing interests

T.H.R. is a consultant for Iclectus Ltd. M.R.S. is an employee of Iclectus Ltd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabbitts, T., Stocks, M. Chromosomal translocation products engender new intracellular therapeutic technologies. Nat Med 9, 383–386 (2003). https://doi.org/10.1038/nm0403-383

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0403-383

  • Springer Nature America, Inc.

This article is cited by

Navigation