Skip to main content
Log in

When the KChIPs are down

  • News & Views
  • Published:

From Nature Medicine

View current issue Submit your manuscript

Defects in the mechanisms responsible for maintaining the heart's rhythmic contractions can be fatal. The finding that a defect in a potassium-channel accessory protein can predispose mice to cardiac arrhythmia provides insights into the molecular basis of this group of diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Functional consequences of loss of KChIP2 in the mouse heart and explanation of the transmural gradient in Ito in the human heart.

References

  1. Engelstein, E.D. & Zipes, D.P. Sudden cardiac death. in The Heart, Arteries and Veins (eds. Alexander, R. W., Schlant, R. C. & Fuster, V.) 1081–1112 (McGraw-Hill, New York, 1998).

    Google Scholar 

  2. Keating, M.T. & Sanguinetti, M.C. Molecular and cellular mechanisms of cardiac arrhythmias. Cell 104, 569–580 (2001).

    Article  CAS  Google Scholar 

  3. Kuo, H.-C. et al. A defect in the channel-interacting protein 2 (KChIP2) gene leads to a complete loss of the transient outward potassium current (Ito) and confers genetic susceptibility to ventricular tachycardia. Cell 107, 1–20 (2001).

    Article  Google Scholar 

  4. Nabauer, M. & Kaab, S. Potassium channel down-regulation in heart failure. Cardiovasc. Res. 37, 324–334 (1998).

    Article  CAS  Google Scholar 

  5. Wettwer, E. et al. Transient outward current in human ventricular myocytes of subepicardial and subendocardial origin. Circ. Res. 75, 473–482 (1994).

    Article  CAS  Google Scholar 

  6. Antzelevitch, C., et al. Transmural dispersion of repolarization and arrhythmogenicity: the Brugada syndrome versus the long QT syndrome. J. Electrocardiol. 32, 158–165 (1999).

    Article  Google Scholar 

  7. An, W.F. et al. Modulation of A-type potassium channels by a family of calcium sensors. Nature 403, 553–556 (2000).

    Article  CAS  Google Scholar 

  8. London, B. et al. The transient outward current in mice lacking the potassium channel gene Kv1.4. J. Physiol. 509, 171–182 (1998).

    Article  CAS  Google Scholar 

  9. Wickenden, A.D. et al. Targeted expression of a dominant-negative K(v)4.2 K(+) channel subunit in the mouse heart. Circ. Res. 85, 1067–1076 (1999).

  10. Barry, D.M. et al. Functional knockout of the transient outward current, long-QT syndrome, and cardiac remodeling in mice expressing a dominant-negative Kv4 α-subunit. Circ. Res. 83, 560–567 (1998).

    Article  CAS  Google Scholar 

  11. Rosati, B. et al. Regulation of KChIP2 potassium channel β-subunit gene expression underlies the gradient of transient outward current in canine and human ventricle. J. Physiol. 533, 119–125 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanguinetti, M. When the KChIPs are down. Nat Med 8, 18–19 (2002). https://doi.org/10.1038/nm0102-18

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0102-18

  • Springer Nature America, Inc.

This article is cited by

Navigation