Skip to main content
Log in

Metformin ameliorates core deficits in a mouse model of fragile X syndrome

  • Brief Communication
  • Published:

From Nature Medicine

View current issue Submit your manuscript

Abstract

Fragile X syndrome (FXS) is the leading monogenic cause of autism spectrum disorders (ASD). Trinucleotide repeat expansions in FMR1 abolish FMRP expression, leading to hyperactivation of ERK and mTOR signaling upstream of mRNA translation. Here we show that metformin, the most widely used drug for type 2 diabetes, rescues core phenotypes in Fmr1−/y mice and selectively normalizes ERK signaling, eIF4E phosphorylation and the expression of MMP-9. Thus, metformin is a potential FXS therapeutic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Chronic metformin treatment corrects the social deficit, repetitive behavior, aberrant dendritic spine morphology and exaggerated LTD in Fmr1−/y mice.
Figure 2: Chronic metformin treatment corrects macroorchidism, decreases translation and reduces the phosphorylation of upstream eIF4E effectors.

Similar content being viewed by others

References

  1. Gkogkas, C.G. et al. Cell Rep. 9, 1742–1755 (2014).

    Article  CAS  Google Scholar 

  2. Hou, L. et al. Neuron 51, 441–454 (2006).

    Article  CAS  Google Scholar 

  3. Dziembowska, M. et al. Am. J. Med. Genet. A. 161A, 1897–1903 (2013).

    Article  Google Scholar 

  4. Leigh, M.J. et al. J. Dev. Behav. Pediatr. 34, 147–155 (2013).

    Article  Google Scholar 

  5. Sidhu, H., Dansie, L.E., Hickmott, P.W., Ethell, D.W. & Ethell, I.M. J. Neurosci. 34, 9867–9879 (2014).

    Article  Google Scholar 

  6. Foretz, M., Guigas, B., Bertrand, L., Pollak, M. & Viollet, B. Cell Metab. 20, 953–966 (2014).

    Article  CAS  Google Scholar 

  7. Ming, M. et al. PLoS One 9, e114573 (2014).

    Article  Google Scholar 

  8. Wang, J. et al. Cell Stem Cell 11, 23–35 (2012).

    Article  CAS  Google Scholar 

  9. Soares, H.P., Ni, Y., Kisfalvi, K., Sinnett-Smith, J. & Rozengurt, E. PLoS One 8, e57289 (2013).

    Article  CAS  Google Scholar 

  10. Łabuzek, K. et al. Pharmacol. Rep. 62, 956–965 (2010).

    Article  Google Scholar 

  11. Hagerman, R., Au, J. & Hagerman, P. J. Neurodev. Disord. 3, 211–224 (2011).

    Article  Google Scholar 

  12. Bhattacharya, A. et al. Neuron 76, 325–337 (2012).

    Article  CAS  Google Scholar 

  13. Osterweil, E.K. et al. Neuron 77, 243–250 (2013).

    Article  CAS  Google Scholar 

  14. Udagawa, T. et al. Nat. Med. 19, 1473–1477 (2013).

    Article  CAS  Google Scholar 

  15. Li, J., Benashski, S.E., Venna, V.R. & McCullough, L.D. Stroke 41, 2645–2652 (2010).

    Article  CAS  Google Scholar 

  16. Khang, R., Park, C. & Shin, J.H. Neurosci. Lett. 579, 145–150 (2014).

    Article  CAS  Google Scholar 

  17. Jin, J. et al. Neuromolecular Med. 18, 581–592 (2016).

    Article  CAS  Google Scholar 

  18. Singh, J., Olle, B., Suhail, H., Felicella, M.M. & Giri, S. J. Neurochem. 138, 86–100 (2016).

    Article  CAS  Google Scholar 

  19. Lavoie, H. & Therrien, M. Nat. Rev. Mol. Cell Biol. 16, 281–298 (2015).

    Article  CAS  Google Scholar 

  20. Berry-Kravis, E. et al. Sci. Transl. Med. 8, 321ra5 (2016).

    Article  Google Scholar 

  21. Monyak, R.E. et al. Mol. Psychiatry (2016).

  22. Forslund, K. et al. Nature 528, 262–266 (2015).

    Article  CAS  Google Scholar 

  23. Hsiao, E.Y. et al. Cell 155, 1451–1463 (2013).

    Article  CAS  Google Scholar 

  24. Gkogkas, C.G. et al. Nature 493, 371–377 (2013).

    Article  CAS  Google Scholar 

  25. McKinney, B.C., Grossman, A.W., Elisseou, N.M. & Greenough, W.T. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 136B, 98–102 (2005).

    Article  Google Scholar 

  26. Schmidt, E.K., Clavarino, G., Ceppi, M. & Pierre, P. Nat. Methods 6, 275–277 (2009).

    Article  CAS  Google Scholar 

  27. Mogil, J.S. et al. Pain 126, 24–34 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the FRAXA Research Foundation, Brain Canada/FNC, a CIHR foundation grant (FDN-148423) and Brain & Behavior Research Foundation grants (24365) to N.S.; a Wellcome Trust/Royal Society Sir Henry Dale grant (107687/Z/15/Z) to C.G.G.; the Canada Research Chair Program (950-231066) to J.-C.L.; and a Brain Canada/NeuroDevNet Postdoctoral Training Award to J.P.

Author information

Authors and Affiliations

Authors

Contributions

I.G., A.K. and J.P. designed the experiments, performed data analysis and wrote the manuscript. I.G., A.K., J.P., A.A.-V., E.F., R.C., V.S., T.P., A.N., S.W., S.M.J., C.C., E.A.M. and C.G.G. designed and carried out experiments. A.S., V.T.T., I.A.G. and K.G. assisted with experiments. K.N. supervised the project. J.-C.L., C.G.G. and N.S. supervised the project, designed experiments and edited the manuscript. All authors revised the manuscript.

Corresponding author

Correspondence to Nahum Sonenberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures and Tables

Supplementary Figures 1–17 and Supplementary Tables 1 and 2. (PDF 5149 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gantois, I., Khoutorsky, A., Popic, J. et al. Metformin ameliorates core deficits in a mouse model of fragile X syndrome. Nat Med 23, 674–677 (2017). https://doi.org/10.1038/nm.4335

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4335

  • Springer Nature America, Inc.

This article is cited by

Navigation