Skip to main content
Log in

Linkage analysis of susceptibility to ozone-induced lung inflammation in inbred mice

  • Letter
  • Published:

From Nature Genetics

View current issue Submit your manuscript

Abstract

Exposures to the common air pollutant ozone (O3) cause decrements in pulmonary function and induce airway inflammation that is characterized by infiltration of polymorphonuclear neu-trophils (PMNs; refs 1–4). Because of the impact that O3 may have on public health, it is critical to identify susceptibility factors. Highly reproducible, significant inter-individual variations in human pulmonary function responses to O3 support the hypothesis that genetic background is an important determinant5,6. Initial analysis of PMN responses to O3 exposure in segregant populations derived from inflammation-prone (susceptible) C57BL/6J (B6) and inflammation-resistant C3H/HeJ (C3) inbred mice indicated that susceptibility was controlled by a locus we termed Inf2 (ref. 7). Subsequent analyses with recombinant inbred strains suggested that a more complex interaction of genes is involved8. In this report, we identify a quantitative trait locus (QTL) for O3 susceptibility on chromosome 17. Candidate genes for the locus include Tnf, the gene encoding the pro-inflammatory cytokine tumour necrosis factor-α(Tnf). Antibody neutralization of the protein product of this putative candidate gene significantly protected against O3 injury in susceptible mice. These results strongly support linkage of O3 susceptibility to a QTL on chromosome 17 and Tnf as a candidate gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bascom, R. et al. Health effects of outdoor air pollution. Am. J. Respir, Crit. Care Med. 153, 3–50 (1996).

    Article  Google Scholar 

  2. Kleeberger, S.R. Genetic susceptibility to ozone exposure. Toxicol. Lett. 82/83, 295–300 (1995).

    Article  CAS  Google Scholar 

  3. Aris, R.M. et al. Ozone-induced airway inflammation in human subjects as determined by airway lavage and biopsy. Am. Rev. Respir. Dis. 148, 1363–1372 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Devlin, R.B. et al. Exposure of humans to ambient levels of ozone for 6.6 hours causes cellular and biochemical changes in the lung. Am. J. Respir. Cell Mol. Biol. 4, 72–81 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. McDonnell, W.F. III, Horstman, D.H., Abdul-Salaam, S. & House, D.E. Reproducibility of individual responses to ozone exposure. Am. Rev. Respir. Dis. 131, 36–40 (1985).

    CAS  PubMed  Google Scholar 

  6. Weinmann, G.G., Bowes, S.M., Gerbase, M.W., Kimball, A.W. & Frank, R. Response to acute ozone exposure in healthy men: results of a screening procedure. Am. J. Respir. Crit. Care Med. 151, 33–40 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Kleeberger, S.R., Levitt, R.C. & Zhang, L. Susceptibility to ozone-induced inflammation: I. Genetic control of the response to subacute exposure. Am. J. Physiol. 264, L15–L20 (1993).

    CAS  PubMed  Google Scholar 

  8. Kleeberger, S.R., Levitt, R.C. & Zhang, L. Susceptibility to ozone-induced inflammation: II. Separate loci control responses to acute and subacute exposures. Am. J. Physiol. 264, L21–L26 (1993).

    CAS  PubMed  Google Scholar 

  9. Statistical Analysis for Genetic Epidemiology, Release 2. 2 (available from Elston, R.C., Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, 1994).

  10. Lander, E.S. & Kruglyak, L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nature Genet. 11, 241–247 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Agostini, C. et al. Expression of tumor necrosis factor-receptor superfamily members by lung T lymphocytes in interstitial lung disease. Am. J. Respir. Crit. Care Med. 153, 1359–1367 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Shah, A., Church, M.K. & Holgate, S.T. Tumour necrosis factor alpha: a potential mediator of asthma. Clin. Exp. Allergy. 25, 1038–1044 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Casale, T.B., Costa, J.J. & Galli, S.J. TNFα is important in human lung allergic reactions. Am. J. Respir. Cell Mol. Biol. 15, 35–44 (1996).

    CAS  Google Scholar 

  14. Claudio, E. et al. Molecular mechanisms of TNFα cytotoxicity: activation of NF-kB and nuclear translocation. Exper. Cell Res. 224, 63–71 (1996).

    Article  CAS  Google Scholar 

  15. Goossens, V., Grooten, J., DeVos, K. & Fiers, W. Direct evidence for tumor necrosis factor-induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity. Proc. Natl. Acad. Sci. USA. 92, 8115–8119 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lukacs, N.W., Strieter, R.M. & Chensue, S.W., Widmer, M. & Kunkel, S.L. TNF-α mediates recruitment of neutrophils and eosinophils during airway inflammation. J. Immunol. 154, 5411–5417 (1995).

    CAS  PubMed  Google Scholar 

  17. Smart, S.J. & Casale, T.B. TNF-α–induced transendothelial neutrophil migration is IL-8 dependent. Am. J. Physiol. 266, L238–L245 (1994).

    CAS  PubMed  Google Scholar 

  18. Visner, G.A., Dougall, W.C., Wilson, J.M., Burr, I.A. & Nick, H.S. Regulation of manganese superoxide dismutase by lipopolysaccharide, interleukin-1, and tumor necrosis factor: role in the acute inflammatory response. J. Biol. Chem. 265, 2856–2864 (1990).

    CAS  PubMed  Google Scholar 

  19. Bazzoni, F. & Beutler, B. The tumor necrosis factor ligand and receptor families. N. Engl. J. Med. 334, 1717–1725 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Longphre, M., Zhang, L., Harkema, J.R. & Kleeberger, S.R. Mast cells contribute to O3-induced epithelial damage and proliferation in nasal and bronchial airways of mice. J. Appl. Physiol. 80, 1322–1330 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Hunt, J.E., Stevens, R.L., Austen, K.F., Zhang, J. & Xia, Z. Natural disruption of the mouse mast cell protease 7 gene in the C57BL/6 mouse. J. Biol. Chem. 271, 2851–2855 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. DiSilvestre, D., Kleeberger, S.R., Johns, J. & Levitt, R.C. Structure and DNA sequence of the mouse MnSOD gene. Mamm. Genome. 6, 281–284 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. DeSanctis, G.T. et al. Quantitative locus analysis of airway hyperresponsiveness in A/J and C57BL/6J mice. Nature Genet. 11, 150–154 (1995).

    Article  CAS  Google Scholar 

  24. Sheehan, K.C.F., Ruddle, N.H. & Schreiber, R.D. Generation and characterization of hamster monoclonal antibodies that neutralize murine tumor necrosis factors. J. Immunol. 142, 3884–3893 (1989).

    CAS  PubMed  Google Scholar 

  25. Elston, R.C. The genetic analysis of quantitative trait differences between two homozygous lines. Genetics. 108, 733–744 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lander, E.S. & Botstein, D., Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 121, 185–199 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Silver, L.M., Mouse Genetics:Concepts and Applications(Oxford University Press, New York, 1995).

    Google Scholar 

  28. Manly, K.F., Cudmore, R., & Kohler, G. Map Manager QT(Roswell Park Cancer Institute, Buffalo, New York, 1996).

    Google Scholar 

  29. Lincoln, S., Daly, M. & Lander, E. Mapping genes controlling quantitative traits with MAPMAKER/QTL 1.1 (Whitehead Institute, technical report, Cambridge Massachusetts,1992) .

    Google Scholar 

  30. Flint, J. et al. A simple genetic basis for a complex psychological trait in laboratory mice. Science. 269, 1432–1435 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleeberger, S., Levitt, R., Zhang, LY. et al. Linkage analysis of susceptibility to ozone-induced lung inflammation in inbred mice. Nat Genet 17, 475–478 (1997). https://doi.org/10.1038/ng1297-475

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1297-475

  • Springer Nature America, Inc.

This article is cited by

Navigation