Skip to main content
Log in

A contravention of Ohno's law in mice

  • Article
  • Published:

From Nature Genetics

View current issue Submit your manuscript

Abstract

The chloride channel gene, CLCN4, has been previously mapped to the X chromosome in humans. We isolated a cDNA clone for mouse Clcn4 and used this to map the gene in an interspecific backcross. This revealed the surprising finding that the gene maps to the X chromosome in Mus spretus but to chromosome 7 in C57BL/6 mice. This is the first example of a gene that contravenes Ohno's law — it is a gene unique to the X chromosome in one eutherian species but autosomal in another. The consequence of this chromosomal rearrangement is that the gene is lost by mendelian segregation in a subset of the male progeny of a (C57BL/6 × Mus spretus) × Mus spretus backcross.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ohno, S. Sex chromosomes and sex linked genes. (Springer Verlag, Berlin, 1967).

    Book  Google Scholar 

  2. Lyon, M.F. Gene action in the X chromosome of the mouse (Mus musculus L). Nature 190, 370–373 (1961).

    Article  Google Scholar 

  3. Lyon, M.F. Some milestones in the history of X-chromosome inactivation. A. Rev. Genet. 26, 16–28 (1992).

    Article  CAS  Google Scholar 

  4. Ellis, N. & Goodfellow, P.N. The mammalian pseudoautosomal region. Trends Genet. 5, 406–410 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. Disteche, C.M. et al. The human pseudoautosomal GM-CSF receptor α subunit gene is autosomal in mouse. Nature Genet. 1, 333–336 (1992).

    CAS  Google Scholar 

  6. Miyajima, I. et al. The murine interleukin-3 receptor alpha subunit gene: chromosomal localization, genomic structure and promotor function. Blood 85, 1246–1253 (1995).

    CAS  PubMed  Google Scholar 

  7. Herman, G.E., Boyd, Y., Chapman, V., Chatterjee, A. & Brown, S.D.M. Mouse X chromosome. Mamm. Genome 5, S276–S288 (1994).

    CAS  PubMed  Google Scholar 

  8. Van Slegtenhorst, M.A. et al. A gene from the Xp22.3 region shares homology with voltage gated chloride channels. Hum. molec. Genet. 3, 547–552 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Koch, M.C. et al. The skeletal muscle chloride channel in dominant and recessive human myotonia. Science 257, 797–800 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Ptacek, L.J., Johnson, K.J. & Griggs, R.C. Genetics and physiology of the myotonte muscle disorders. New Engl. J. Med. 328, 482–489 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Caldwell, J.H. & Schaller, K.L. Opening the gates on ion channel diseases. Nature Genet. 2, 87–89 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. George, A.L., Crackower, M.A., Abdalla, J.A., Hudson, A.J. & Ebers, G.C. Molecular basis of Thomson's disease (autosomal dominant myotonia congenita). Nature Genet. 3, 305–309 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Fisher, S.E. et al. Isolation and partial characterization of a chloride channel gene which is expressed in kidney and is a candidate for Dent's disease (an X-linked hereditary nephrolithiasis). Hum. molec. Genet. 3, 2053–2059 (1994).

    CAS  PubMed  Google Scholar 

  14. Meindl, A. et al. Analysis of a terminal Xp22.3 deletion in a patient with six monogenic disorders: implications for the mapping of X linked ocular albinism. J. med. Genet. 30, 838–842 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. The European Backcross Collaborative Group(1994). Towards high resolution maps of the mouse and human genomes — a facility for ordering markers to 0.1 cM resolution. Hum. molec. Genet. 3, 621–627.

  16. Ashworth, A., Rastan, S., Lovell-Badge, R. & Kay, G. X-chromosome inactivation may explain the difference in viability of XO hurnans and mice. Nature 351, 406–408 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Salido, E.C. et al. Cloning of the mouse steroid sulfatase (Sts) gene. Am. J. hum. Genet. 55, A138 (1994).

    Google Scholar 

  18. Haldane, J.B.S. Sex ratio and unisexual sterility in hybrid animals. J. Genet. 12, 101–109 (1922).

    Article  Google Scholar 

  19. Guenet, J.L., Nagamine, C., Simon-Chazottes, D., Montagutelli, X. & Bonhomme, F. Hst-3: an X-linked hybrid sterility gene. Genet. Res. 56, 163–165 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. Biddle, F.G., Eales, B.A. & Dean, W.L. Haldane's rule and heterogametic female and male sterility in the mouse. Genome 37, 198–202 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Matsuda, Y., Hirobe, T. & Chapman, V.M. Genetic basis of X-Y chromosome dissociation and male sterility in interspecific hybrids. Proc. natn. Acad. Sci. U.S.A. 88, 4850–4854 (1991).

    Article  CAS  Google Scholar 

  22. Hale, D.W., Washburn, L.L. & Eicher, E.M. Meiotic abnormalities in hybrid mice of the C57BI/6J × Mas spretus cross suggest a cytogenetic basis for Haldane's rule of hybrid sterility. Cytogenet. Cell Genet. 63, 221–234 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Coyne, J.A. The genetic basis of Haldane's rule. Nature 314, 736–738 (1985).

    Article  CAS  PubMed  Google Scholar 

  24. Church, G. & Gilbert, W. Genomic Sequencing. Proc. natn. Acad. Sci U.S.A. 81, 1991–1995 (1984).

    Article  CAS  Google Scholar 

  25. Willison, K.R., Dudley, K. & Potter, J. Molecular cloning and sequence analysis of a haploid expressed gene encoding t complex polypeptide 1. Cell 44, 727–738 (1986).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmer, S., Perry, J. & Ashworth, A. A contravention of Ohno's law in mice. Nat Genet 10, 472–476 (1995). https://doi.org/10.1038/ng0895-472

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0895-472

  • Springer Nature America, Inc.

This article is cited by

Navigation