Skip to main content
Log in

A tandem duplication in the D–loop of human mitochondrial DNA is associated with deletions in mitochondrial myopathies

  • Article
  • Published:

From Nature Genetics

View current issue Submit your manuscript

Abstract

About 40 per cent of patients with mitochondrial myopathies have two populations of mitochondrial DNA (mtDNA) in muscle, one of which is deleted. All patients with single mtDNA deletions and neurological disease are sporadic cases, suggesting that deletions arise as fresh mutational events. We have detected a low abundance heteroplasmic tandem duplication involving the displacement loop of mtDNA in 18 of 58 patients with deletions and 5/5 of their mothers, but not in normal subjects. The location of the duplication to a region that controls both replication and transcription of mtDNA could explain features suggesting mild mitochondrial dysfunction in the muscle biopsies of three patients' mothers, and a predisposition to deletion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Holt, I.J., Harding, A.E. & Morgan-Hughes, J.A. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 331, 717–719 (1988).

    Article  CAS  PubMed  Google Scholar 

  2. Holt, I.J. et al. Mitochondrial myopathies: Clinical and biochemical features of 30 patients with major deletions of muscle mitochondrial DNA. Ann. Neurol. 29, 600–608 (1989).

    Google Scholar 

  3. Moraes, C.T. et al. Mitochondrial DNA deletions in progressive external ophthalmoplegia and Kearns-Sayre syndrome. New Engl. J. Med. 320, 1293–1299 (1989).

    Article  CAS  PubMed  Google Scholar 

  4. Shoubridge, E.A., Karpati, G. & Hastings, K.E. Deletion mutants are functionally dominant over wild-type mitochondrial genomes in skeletal muscle fiber segments in mitochondrial disease. Cell 62, 43–49 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. Hammans, S.R., Sweeney, M.G., Wicks, D.A.G., Morgan-Hughes, J.A. & Harding, A.E. A molecular genetic study of focal histochemical defects in mitochondrial encephalomyopathies. Brain 115, 343–366 (1992).

    Article  PubMed  Google Scholar 

  6. Moraes, C.T. et al. Molecular analysis of the muscle pathology associated with mitochondrial DNA deletions. Nature Genet. 1, 359–367 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Poulton, J., Deadman, M.E. & Gardiner, R.M. Duplications of mitochondrial DNA in mitochondrial myopathy. Lancet 1, 236–240 (1989).

    Article  CAS  PubMed  Google Scholar 

  8. Rotig, A. et al. Maternally inherited duplication of the mitochondrial genome in a syndrome of proximal tubulopathy, diabetes mellitus, and cerebellar ataxia. Am. J. hum. Genet. 50, 364–370 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Zeviani, M. et al. An autosomal dominant disorder with multiple deletions of mtDNA starting at the D-loop region. Nature 339, 309–311 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. Poulton, J., Deadman, M.E., Ramacharan, S. & Gardiner, R.M. Germ-line deletions of mtDNA in mitochondrial myopathy. Am. J. hum. Genet. 48, 649–653 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Sandy, M.S., Langston, J.W., Smith, M.T. & Di Monte, D.A. PCR analysis of platelet mtDNA: lack of specific changes in Parkinson's disease. Movement Disorders 8, 74–82 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Mita, S. et al. Recombination via flanking direct repeats is a major cause of large-scale deletions of human mitochondrial DNA. Nucl. Acids Res. 18, 561–567 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shoffner, J.M. et al. Spontaneous Kearns-Sayre/chronic external opthalmoplegia plus syndrome associated with a mitochondrial DNA deletion: a slip-replication model and metabolic therapy. Proc. natn. Acad. Sci. U.S.A. 86, 7952–7956 (1990).

    Article  Google Scholar 

  14. Holt, I.J., Harding, A.E. & Morgan-Hughes, J.A. Deletions in muscle mitochondrial DNA: sequence analysis and possible mechanisms. Nucl. Acids Res. 17, 4465–4469 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Anderson, S. et al. Sequence and organisation of the human mitochondrial genome. Nature 290, 457–465 (1981).

    Article  CAS  PubMed  Google Scholar 

  16. Hammans, S.R. et al. Evidence for intramitochondrial complementation between deleted and normal mitochondrial DNA in some patients with mitochondrial myopathy. J. neurol. Sci. 107, 87–92 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Horai, S. & Hayasaka, K. Intraspecific nucleotide sequence differences in the major noncoding region of human mitochondrial DNA. Am. J. hum. Genet. 46, 828–842 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hayasaka, H., Ishida, T. & Horai, S. Heteroplasmy and polymorphism in the major noncoding region of mitochondrial DNA in Japanese monkeys: association with tandemly repeated sequences. Molec. Biol. Evol. 8, 339–415 (1990).

    Google Scholar 

  19. Clayton, D.A. Nuclear gadgets in mitochondrial DNA replication and transcription. Trends Biochem. 16, 107–111 (1991).

    Article  CAS  Google Scholar 

  20. Hauswirth, W.W. & Clayton, D.A. Length heterogeneity of a conserved displacement-loop sequence in human mitochondrial DNA. Nucl. Acids Res. 13, 8093–8104 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hixson, J.E. & Clayton, D.A. Initiation of transcription from each of the two human mitochondrial promoters requires unique nucleotides at the transcriptional start sites. Proc. natn. Acad. Sci. U.S.A. 82, 2660–2664 (1985).

    Article  CAS  Google Scholar 

  22. Topper, J.N. & Clayton, D.A. Identification of transcription regulatory elements in human mitochondrial DNA by linker substitution analysis. Molec. cell Biol. 9, 1200–1211 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Buroker, N.E. et al. Length heteroplasmy of sturgeon mitochondrial DNA: an illegitimate elongation model. Genetics 124, 157–163 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Zeviani, M. Nucleus-driven mutations of human mitochondrial DNA. J. inher. metab. Dis. 15, 456–471 (1990).

    Article  Google Scholar 

  25. Poulton, J. et al. Families of mtDNA rearrangements can be detected in patients with mtDNA deletions: duplications may be a transient intermediate form. Human molec. Genet. 2, 23–30 (1993).

    Article  CAS  Google Scholar 

  26. Sanger, F., Nicklen, S. & Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brockington, M., Sweeney, M., Hammans, S. et al. A tandem duplication in the D–loop of human mitochondrial DNA is associated with deletions in mitochondrial myopathies. Nat Genet 4, 67–71 (1993). https://doi.org/10.1038/ng0593-67

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0593-67

  • Springer Nature America, Inc.

This article is cited by

Navigation