Skip to main content

Advertisement

Log in

Positional cloning moves from perditional to traditional

  • Progress
  • Published:

From Nature Genetics

View current issue Submit your manuscript

A Correction to this article was published on 01 September 1995

Abstract

The technique of positional cloning has become a familiar component of modern human genetics research. After a halting start in the mid–1980s, the number of disease genes succumbing to cloning efforts based solely on pinpointing their position in the genome is growing exponentially. More than 40 genes have been identified so far. But the positional candidate approach, which combines knowledge of map position with the increasingly dense human transcript map, greatly expedites the search process and will soon become the predominant method of disease gene discovery. The challenge ahead is to apply such methods to identifying genes involved in complex polygenic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ruddle, F.H. Am. J. hum. Genet. 36, 944–953 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Royer-Pokora, B. et al. Nature 322, 32–38 (1986).

    Article  CAS  PubMed  Google Scholar 

  3. Collins, F.S. Nature Genet. 1, 3–6 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Ballabio, A. Nature Genet. 3, 277–279 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Malkin, D. et al. Science 250, 1233–1238 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. Bates, G. & Lehrach, H. Bioessays 16, 277–284 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Guyer, M. & Collins, F.S. Am. J. Dis. Child. 147, 1145–1152 (1993).

    CAS  PubMed  Google Scholar 

  8. Stanbridge, E.J., 12, 5–24 (1992).

  9. Kainulainen, K., Pulkkinen, L., Savolainen, A., Kaltila, I. & Peltonen, L. New Engl. J. Med. 323, 935–939 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Magenls, R.E., Maslen, C.L., Smith, L., Allen, L. & Sakai, L.Y. Genomics 4, 346–351 (1991).

    Article  Google Scholar 

  11. Dietz, H.C. et al. Nature 353, 337–339 (1991).

    Article  Google Scholar 

  12. Larimore, T.C. et al. Genomics 9, 181–192 (1991).

    Article  Google Scholar 

  13. Mulligan, L.M. et al. Nature 363, 458–460 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Edery, P. et al. Nature 367, 378–380 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Shiang, R. et al. Cell 78, 335–342 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Thompson, L.M. et al. Genomics 11, 1133–1142 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Leach, F.S. et al. Cell 75, 1215–1225 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Papadopoulos, N. et al. Science 283, 1559–1560 (1994).

    Google Scholar 

  19. Nicolaides, N.C. et al. Nature 371, 75–80 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Lander, E.S. & Schork, N.J. Science 265, 2037–2048 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Davies, J. et al. Nature 371, 130–136 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Bennett, S.T. et al. Nature Genet. 9, 284–291 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Hastbacka, J. et al. Cell 78, 1073–1087 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Pease, A.C. et al. Proc. natn. Acad. Sci. U.S.A. 91, 5022–5026 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collins, F. Positional cloning moves from perditional to traditional. Nat Genet 9, 347–350 (1995). https://doi.org/10.1038/ng0495-347

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0495-347

  • Springer Nature America, Inc.

This article is cited by

Navigation