Skip to main content
Log in

Direct transfer of extended groups from synthetic cofactors by DNA methyltransferases

  • Brief Communication
  • Published:

From Nature Chemical Biology

View current issue Submit your manuscript

Abstract

S-Adenosyl-L-methionine (AdoMet) is the major methyl donor for biological methylation reactions catalyzed by methyltransferases. We report the first chemical synthesis of AdoMet analogs with extended carbon chains replacing the methyl group and their evaluation as cofactors for all three classes of DNA methyltransferases. Extended groups containing a double or triple bond in the β position to the sulfonium center were transferred onto DNA in a catalytic and sequence-specific manner, demonstrating a high utility of such synthetic cofactors for targeted functionalization of biopolymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Enzymatic transalkylation reactions by DNA methyltransferases.

Similar content being viewed by others

References

  1. Cantoni, G.L. J. Am. Chem. Soc. 74, 2942–2943 (1952).

    Article  CAS  Google Scholar 

  2. Cheng, X. & Blumenthal, R.M. S-Adenosylmethionine-dependent Methyltransferases: Structures and Functions. 392 (World Scientific, Singapore, 1999).

    Book  Google Scholar 

  3. Goll, M.G. & Bestor, T.H. Annu. Rev. Biochem. 74, 481–514 (2005).

    Article  CAS  Google Scholar 

  4. Schlenk, F. & Dainko, J.L. Biochim. Biophys. Acta 385, 312–323 (1975).

    Article  CAS  Google Scholar 

  5. Schlenk, F. in Biochemistry of Adenosylmethionine (eds. Salvatore, F., Borek, E., Zappia, V., Williams-Ashman, H.G. & Schlenk, F.) 3–17 (Columbia Univ. Press, New York, 1977).

    Google Scholar 

  6. De La Haba, G., Jamieson, G.A., Mudd, S.H. & Richards, H.H. J. Am. Chem. Soc. 81, 3975–3980 (1959).

    Article  CAS  Google Scholar 

  7. Borchardt, R.T. & Wu, Y.S. J. Med. Chem. 19, 1099–1103 (1976).

    Article  CAS  Google Scholar 

  8. Goedecke, K., Pignot, M., Goody, R.S., Scheidig, A.J. & Weinhold, E. Nat. Struct. Biol. 8, 121–125 (2001).

    Article  CAS  Google Scholar 

  9. Klimasauskas, S., Kumar, S., Roberts, R.J. & Cheng, X. Cell 76, 357–369 (1994).

    Article  CAS  Google Scholar 

  10. Merkiene, E., Vilkaitis, G. & Klimasauskas, S. Biol. Chem. 379, 569–571 (1998).

    CAS  PubMed  Google Scholar 

  11. Ho, D.K., Wu, J.C., Santi, D.V. & Floss, H.G. Arch. Biochem. Biophys. 284, 264–269 (1991).

    Article  CAS  Google Scholar 

  12. Schubert, H.L., Blumenthal, R.M. & Cheng, X. Trends Biochem. Sci. 28, 329–335 (2003).

    Article  CAS  Google Scholar 

  13. Mi, S. & Roberts, R.J. Nucleic Acids Res. 21, 2459–2464 (1993).

    Article  CAS  Google Scholar 

  14. Pljevaljcic, G., Schmidt, F. & Weinhold, E. Chem. Biochem. 5, 265–269 (2004).

    CAS  Google Scholar 

  15. Roberts, R.J., Vincze, T., Posfai, J. & Macelis, D. Nucleic Acids Res. 33, D230–D232 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to E. Merkiene and M. Čaikovskij for constructing the Q82A variant of M.HhaI, F. Grygas and R. Gerasimaite for technical assistance and K. Glensk for preparing M.TaqI. We thank V. Gabelica and F. Rosu for performing high-resolution ESI-MS measurements at the Center for Analysis of Residues in Traces (CART), laboratory of E. De Pauw, University of Liège, Belgium. C.D. thanks the Deutsche Forschungsgemeinschaft for a stipend within the Graduiertenkolleg 440. This work was supported by grants from VolkswagenStiftung, the Howard Hughes Medical Institute and the Ministry of Science and Education of Lithuania.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saulius Klimas̆auskas or Elmar Weinhold.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

HPLC analysis of chemically and enzymatically synthesized S-adenosyl-L-ethionine. (PDF 363 kb)

Supplementary Fig. 2

Analysis of enzymatic transalkylation reactions by DNA MTases. (PDF 1450 kb)

Supplementary Fig. 3

Analysis of transalkylation products formed in duplex oligodeoxynucleotides. (PDF 472 kb)

Supplementary Fig. 4

Blockage of restriction endonuclease cleavage at overlapping sites on DNA by enzymatic incorporation of extended groups. (PDF 232 kb)

Supplementary Table 1

ESI-MS analysis of synthetic AdoMet analogs and modified nucleosides formed after enzymatic transalkylations with DNA MTases. (PDF 98 kb)

Supplementary Methods (PDF 156 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalhoff, C., Lukinavičius, G., Klimas̆auskas, S. et al. Direct transfer of extended groups from synthetic cofactors by DNA methyltransferases. Nat Chem Biol 2, 31–32 (2006). https://doi.org/10.1038/nchembio754

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio754

  • Springer Nature America, Inc.

This article is cited by

Navigation