Skip to main content
Log in

Synthetic biology: lessons from the history of synthetic organic chemistry

  • Commentary
  • Published:

From Nature Chemical Biology

View current issue Submit your manuscript

The mid-nineteenth century saw the development of a radical new direction in chemistry: instead of simply analyzing existing molecules, chemists began to synthesize them—including molecules that did not exist in nature. The combination of this new synthetic approach with more traditional analytical approaches revolutionized chemistry, leading to a deep understanding of the fundamental principles of chemical structure and reactivity and to the emergence of the modern pharmaceutical and chemical industries. The history of synthetic chemistry offers a possible roadmap for the development and impact of synthetic biology, a nascent field in which the goal is to build novel biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Chemical synthesis and theories of structure emerged concurrently.
Figure 2: Synthesis and analysis are complementary.

References

  1. Jaffe, B. Crucibles: The Story of Chemistry from Ancient Alchemy to Nuclear Fission (Dover Publications, New York, 1976).

    Google Scholar 

  2. Wöhler, F. Poggendorff's Ann. Phys. 12, 253–256 (1828).

    Article  Google Scholar 

  3. Asimov, I. A Short History of Chemistry (Anchor Books, Garden City, New York, USA, 1965).

    Google Scholar 

  4. Khorana, H.G. Fed. Proc. 24, 1473–1487 (1965).

    PubMed  CAS  Google Scholar 

  5. Gutte, B. & Merrifield, R.B. J. Biol. Chem. 246, 1922–1941 (1971).

    PubMed  CAS  Google Scholar 

  6. Cello, J., Paul, A.V. & Wimmer, E. Science 297, 1016–1018 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Khosla, C. & Keasling, J.D. Nat. Rev. Drug Discov. 2, 1019–1025 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Anderson, J.C., Clarke, E.J., Arkin, A.P. & Voigt, C.A. J. Mol. Biol. 355, 619–627 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Andrianantoandro, E., Basu, S., Karig, D.K. & Weiss, R. Mol. Syst. Biol. 2, 2006.0028 (2006).

  10. Benner, S.A. & Sismour, A.M. Nat. Rev. Genet. 6, 533–543 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Endy, D. Nature 438, 449–453 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Voigt, C.A. Curr. Opin. Biotechnol. 17, 548–557 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Arkin, A.P. & Fletcher, D.A. Genome Biol. 7, 114 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Suel, G.M., Garcia-Ojalvo, J., Liberman, L.M. & Elowitz, M.B. Nature 440, 545–550 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Suel, G.M., Kulkarni, R.P., Dworkin, J., Garcia-Ojalvo, J. & Elowitz, M.B. Science 315, 1716–1719 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Alon, U. Nat. Rev. Genet. 8, 450–461 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Alon, U. Nature 446, 497 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Hoffmann, R. The Same and Not the Same (Columbia University Press, New York, 1995).

    Google Scholar 

  19. Becskei, A., Seraphin, B. & Serrano, L. EMBO J. 20, 2528–2535 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kaern, M., Blake, W.J. & Collins, J.J. Annu. Rev. Biomed. Eng. 5, 179–206 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Pitera, D.J., Paddon, C.J., Newman, J.D. & Keasling, J.D. Metab. Eng. 9, 193–207 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Park, S.H., Zarrinpar, A. & Lim, W.A. Science 299, 1061–1064 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Yeh, B.J., Rutigliano, R.J., Deb, A., Bar-Sagi, D. & Lim, W.A. Nature 447, 596–600 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Rinaudo, K. et al. Nat. Biotechnol. 25, 795–801 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Forster, A.C. & Church, G.M. Mol. Syst. Biol. 2, 45 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rackham, O. & Chin, J.W. Biochem. Soc. Trans. 34, 328–329 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Kortemme, T. & Baker, D. Curr. Opin. Chem. Biol. 8, 91–97 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Lartigue, C. et al. Science (in the press).

  29. Haseltine, E.L. & Arnold, F.H. Annu. Rev. Biophys. Biomol. Struct. 36, 1–19 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Bugl, H. et al. Nat. Biotechnol. 25, 627–629 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Chau, M. Cohen, N. Helman, B. Rhau, J. Taunton and A. Watters for their comments on this Commentary. This work was supported by the US National Institutes of Health Roadmap, the US National Science Foundation, the Packard Foundation and the Rogers Family Foundation.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeh, B., Lim, W. Synthetic biology: lessons from the history of synthetic organic chemistry. Nat Chem Biol 3, 521–525 (2007). https://doi.org/10.1038/nchembio0907-521

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio0907-521

  • Springer Nature America, Inc.

This article is cited by

Navigation