Skip to main content
Log in

Membrane proteins take center stage in Frankfurt

  • Meeting Report
  • Published:

From Nature Chemical Biology

View current issue Submit your manuscript

Biological membranes are dynamic frontiers whose molecules must delicately balance the needs for compartmentalization and communication, and the gap between the vital significance of transport and signaling through membranes and our poor understanding of the precise functionality of these processes is daunting. However, a recent conference highlighted promising progress in the field, particularly made possible by the increasing structural knowledge about membrane proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Proposed model of FHA transport across the outer membrane.
Figure 2: Typical cycle for ion-coupled secondary transport involving cotransport of a substrate with an ion.
Figure 3: SRP-mediated protein translocation across membranes.

References

  1. Iwata, S., Ostermeier, C., Ludwig, B. & Michel, H. Nature 376, 660–669 (1995).

    Article  CAS  Google Scholar 

  2. Dürr, K.L. et al. J. Mol. Biol. 384, 865–877 (2008).

    Article  Google Scholar 

  3. Zhang, F. et al. Nature 446, 633–639 (2007).

    Article  CAS  Google Scholar 

  4. Liewald, J.F. et al. Nat. Methods 5, 895–902 (2008).

    Article  CAS  Google Scholar 

  5. Rubio, M.A. et al. Proc. Natl. Acad. Sci. USA 105, 9186–9191 (2008).

    Article  CAS  Google Scholar 

  6. Duvezin-Caubet, S. et al. J. Biol. Chem. 281, 37972–37979 (2006).

    Article  CAS  Google Scholar 

  7. Duvezin-Caubet, S. et al. Mol. Biol. Cell 18, 3582–3590 (2007).

    Article  CAS  Google Scholar 

  8. Strauss, M., Hofhaus, G., Schröder, R.R. & Kühlbrandt, W. EMBO J. 27, 1154–1160 (2008).

    Article  CAS  Google Scholar 

  9. Meier, T., Polzer, P., Diederichs, K., Welte, W. & Dimroth, P. Science 308, 659–662 (2005).

    Article  CAS  Google Scholar 

  10. Koch, J. & Tampé, R. Cell Mol. Life Sci. 63, 653–662 (2006).

    Article  CAS  Google Scholar 

  11. Loch, S. et al. J. Biol. Chem. 283, 13428–13436 (2008).

    Article  CAS  Google Scholar 

  12. Oldham, M.L., Khare, D., Quiocho, F.A., Davidson, A.L. & Chen, J. Nature 450, 515–521 (2007).

    Article  CAS  Google Scholar 

  13. Orelle, C., Ayvaz, T., Everly, R.M., Klug, C.S. & Davidson, A.L. Proc. Natl. Acad. Sci. USA 105, 12837–12842 (2008).

    Article  CAS  Google Scholar 

  14. Seeger, M.A. et al. Science 313, 1295–1298 (2006).

    Article  CAS  Google Scholar 

  15. Seeger, M.A. et al. Nat. Struct. Mol. Biol. 15, 199–205 (2008).

    Article  CAS  Google Scholar 

  16. Clantin, B. et al. Science 317, 957–961 (2007).

    Article  CAS  Google Scholar 

  17. Forrest, L.R. et al. Proc. Natl. Acad. Sci. USA 105, 10338–10343 (2008).

    Article  CAS  Google Scholar 

  18. Ressl, S., Terwisscha van Scheltinga, A.C., Vonrhein, C., Ott, V. & Ziegler, C. Nature (in the press).

  19. Faham, S. et al. Science 321, 810–814 (2008).

    Article  CAS  Google Scholar 

  20. Junge, F. et al. Cell. Mol. Life Sci. 65, 1729–1755 (2008).

    Article  CAS  Google Scholar 

  21. Poteryaev, D., Fares, H., Bowerman, B. & Spang, A. EMBO J. 26, 301–312 (2007).

    Article  CAS  Google Scholar 

  22. Barrowman, J., Hamblet, C., George, C.M. & Michaelis, S. Mol. Biol. Cell 19, 5398–5408 (2008).

    Article  CAS  Google Scholar 

  23. Schuldiner, M. et al. Cell 134, 634–645 (2008).

    Article  CAS  Google Scholar 

  24. Neher, S.B., Bradshaw, N., Floor, S.N., Gross, J.D. & Walter, P. Nat. Struct. Mol. Biol. 15, 916–923 (2008).

    Article  CAS  Google Scholar 

  25. Bradshaw, N., Neher, S.B., Booth, D.S. & Walter, P. Science 323, 127–130 (2009).

    Article  CAS  Google Scholar 

  26. Stengel, K.F. et al. Science 321, 253–256 (2008).

    Article  CAS  Google Scholar 

  27. Saparov, S.M. et al. Mol. Cell 26, 501–509 (2007).

    Article  CAS  Google Scholar 

  28. Platta, H.W. et al. J. Cell Biol. 177, 197–204 (2007).

    Article  CAS  Google Scholar 

  29. Platta, H.W. & Erdmann, R. Trends Cell Biol. 17, 474–484 (2007).

    Article  CAS  Google Scholar 

  30. Riezman, H. & van Meer, G. Nat. Cell Biol. 6, 15–16 (2004).

    Article  CAS  Google Scholar 

  31. Halter, D. et al. J. Cell Biol. 179, 101–115 (2007).

    Article  CAS  Google Scholar 

  32. Weyand, S. et al. Science 322, 709–713 (2008).

    Article  CAS  Google Scholar 

  33. Yamashita, A., Singh, S.K., Kawate, T., Jin, Y. & Gouaux, E. Nature 437, 215–223 (2005).

    Article  CAS  Google Scholar 

  34. Egea, P.F. et al. Nature 427, 215–221 (2004).

    Article  CAS  Google Scholar 

  35. Rosendal, K.R., Wild, K., Montoya, G. & Sinning, I. Proc. Natl. Acad. Sci. USA 100, 14701–14706 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Pietzsch for his support in transferring specialized, expert knowledge into a general scientific form. We are grateful to J. Uphoff for excellent administrative co-organization. The meeting was supported by the SFB 807 “Membrane Transport and Communication” (Deutsche Forschungsgemeinschaft).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schleiff, E., Tampé, R. Membrane proteins take center stage in Frankfurt. Nat Chem Biol 5, 135–139 (2009). https://doi.org/10.1038/nchembio0309-135

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio0309-135

  • Springer Nature America, Inc.

Navigation