Skip to main content
Log in

Chemical informatics and target identification in a zebrafish phenotypic screen

  • Brief Communication
  • Published:

From Nature Chemical Biology

View current issue Submit your manuscript

Abstract

Target identification is a core challenge in chemical genetics. Here we use chemical similarity to computationally predict the targets of 586 compounds that were active in a zebrafish behavioral assay. Among 20 predictions tested, 11 compounds had activities ranging from 1 nM to 10,000 nM on the predicted targets. The roles of two of these targets were tested in the original zebrafish phenotype. Prediction of targets from chemotype is rapid and may be generally applicable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Compounds for which at least one target is predicted.
Figure 2: Testing target relevance by phenocopy and functional competition.

Similar content being viewed by others

References

  1. Harding, M.W., Galat, A., Uehling, D.E. & Schreiber, S.L. Nature 341, 758–760 (1989).

    Article  CAS  Google Scholar 

  2. Leung, D., Hardouin, C., Boger, D.L. & Cravatt, B.F. Nat. Biotechnol. 21, 687–691 (2003).

    Article  CAS  Google Scholar 

  3. Ong, S.E. et al. Proc. Natl. Acad. Sci. USA 106, 4617–4622 (2009).

    Article  CAS  Google Scholar 

  4. Mayer, T.U. et al. Science 286, 971–974 (1999).

    Article  CAS  Google Scholar 

  5. Haggarty, S.J. et al. Chem. Biol. 7, 275–286 (2000).

    Article  CAS  Google Scholar 

  6. Schreiber, S.L. Nat. Chem. Biol. 1, 64–66 (2005).

    Article  CAS  Google Scholar 

  7. Seiler, K.P. et al. Nucleic Acids Res. 36, D351–D359 (2008).

    Article  CAS  Google Scholar 

  8. Palchaudhuri, R. & Hergenrother, P.J. ACS Chem. Biol. 6, 21–33 (2011).

    Article  CAS  Google Scholar 

  9. Lamb, J. et al. Science 313, 1929–1935 (2006).

    Article  CAS  Google Scholar 

  10. Keiser, M.J., Irwin, J.J. & Shoichet, B.K. Biochemistry 49, 10267–10276 (2010).

    Article  CAS  Google Scholar 

  11. Paolini, G.V., Shapland, R.H., van Hoorn, W.P., Mason, J.S. & Hopkins, A.L. Nat. Biotechnol. 24, 805–815 (2006).

    Article  CAS  Google Scholar 

  12. Yildirim, M.A., Goh, K.I., Cusick, M.E., Barabasi, A.L. & Vidal, M. Nat. Biotechnol. 25, 1119–1126 (2007).

    Article  CAS  Google Scholar 

  13. Keiser, M.J. et al. Nat. Biotechnol. 25, 197–206 (2007).

    Article  CAS  Google Scholar 

  14. Keiser, M.J. et al. Nature 462, 175–181 (2009).

    Article  CAS  Google Scholar 

  15. Kokel, D. et al. Nat. Chem. Biol. 6, 231–237 (2010).

    Article  CAS  Google Scholar 

  16. Hert, J., Keiser, M.J., Irwin, J.J., Oprea, T.I. & Shoichet, B.K. J. Chem. Inf. Model. 48, 755–765 (2008).

    Article  CAS  Google Scholar 

  17. Rogers, D. & Hahn, M. J. Chem. Inf. Model. 50, 742–754 (2010).

    Article  CAS  Google Scholar 

  18. James, C., Weininger, D. & Delany, J. Daylight Theory Manual (Daylight Chemical Information Systems Inc., 2011).

  19. Willett, P., Barnard, J.M. & Downs, G.M. J. Chem. Inf. Comput. Sci. 38, 983–996 (1998).

    Article  CAS  Google Scholar 

  20. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  Google Scholar 

  21. Young, D.W. et al. Nat. Chem. Biol. 4, 59–68 (2008).

    Article  CAS  Google Scholar 

  22. Mestres, J., Gregori-Puigjane, E., Valverde, S. & Sole, R.V. Mol. Biosyst. 5, 1051–1057 (2009).

    Article  CAS  Google Scholar 

  23. Alderton, W., Davenport, R. & Fish, P.V. Drugs Future 35, 517–521 (2010).

    Article  CAS  Google Scholar 

  24. Kinnings, S.L. et al. PLOS Comput. Biol. 5, e1000423 (2009).

    Article  Google Scholar 

  25. Hert, J., Irwin, J.J., Laggner, C., Keiser, M.J. & Shoichet, B.K. Nat. Chem. Biol. 5, 479–483 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Morris for help with Cytoscape. This work was supported by US National Institutes of Health grants GM71896 (to J.J.I. and B.K.S.), AG02132 (to S. Prusiner and B.K.S.), MH085205 and MH086867 (to R.P.), MH091449 (to D.K.), R01 MH093603 and R01 NS49272 (to D.L.M.); a Rogers Family Foundation award (to M.J.K.); the National Institutes of Mental Health Psychoactive Drug Screening Program, grant U19MH82441; the Michael Hooker Chair (to B.L.R.); and fellowships from the Max Kade Foundation (to C.L.) and the European Molecular Biology Organization (to A.T.).

Author information

Authors and Affiliations

Authors

Contributions

The strategy was devised by B.K.S. and R.T.P., the PMR assay by D.K., and target predictions and other calculations by C.L., with assistance and editing by J.J.I., M.J.K., H.L. and B.K.S. Electrophysiology was designed by D.L.M. and implemented by A.T., and GPCR and kinase experiments were designed and implemented by B.L.R. and V.S., who also advised on target-phenotype associations. Zebrafish pharmacology was conducted by D.K. with assistance by C.Y.J.C.

Corresponding authors

Correspondence to Bryan L Roth, Randall T Peterson or Brian K Shoichet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 4982 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laggner, C., Kokel, D., Setola, V. et al. Chemical informatics and target identification in a zebrafish phenotypic screen. Nat Chem Biol 8, 144–146 (2012). https://doi.org/10.1038/nchembio.732

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.732

  • Springer Nature America, Inc.

This article is cited by

Navigation