Skip to main content
Log in

Dioxygenases catalyze the O-demethylation steps of morphine biosynthesis in opium poppy

  • Brief Communication
  • Published:

From Nature Chemical Biology

View current issue Submit your manuscript

Abstract

Two previously undetected enzymes involved in morphine biosynthesis and unique among plants to opium poppy have been identified as non-heme dioxygenases, in contrast to the functionally analogous cytochrome P450s found in mammals. We used functional genomics to isolate thebaine 6-O-demethylase (T6ODM) and codeine O-demethylase (CODM), the only known 2-oxoglutarate/Fe(II)-dependent dioxygenases that catalyze O-demethylation. Virus-induced gene silencing of T6ODM and CODM in opium poppy efficiently blocked metabolism at thebaine and codeine, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Extracted ion chromatograms showing the substrates and products of T6ODM and CODM enzyme assays.
Figure 2: Virus-induced gene silencing analysis.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Ziegler, J. & Facchini, P.J. Annu. Rev. Plant Biol. 59, 735–769 (2008).

    Article  CAS  Google Scholar 

  2. Zhu, W. Med. Sci. Monit. 14, SC15–SC18 (2008).

    CAS  PubMed  Google Scholar 

  3. Grobe, N. et al. J. Biol. Chem. 284, 24425–24431 (2009).

    Article  CAS  Google Scholar 

  4. Unterlinner, B., Lenz, R. & Kutchan, T.M. Plant J. 18, 465–475 (1999).

    Article  CAS  Google Scholar 

  5. Grothe, T., Lenz, R. & Kutchan, T.M. J. Biol. Chem. 276, 30717–30723 (2001).

    Article  CAS  Google Scholar 

  6. Millgate, A.G. et al. Nature 431, 413–414 (2004).

    Article  CAS  Google Scholar 

  7. Nyman, U. Hereditas 89, 43–50 (1978).

    Article  CAS  Google Scholar 

  8. Hagel, J.M., Weljie, A.M., Vogel, H.J. & Facchini, P.J. Plant Physiol. 147, 1805–1821 (2008).

    Article  CAS  Google Scholar 

  9. Cotterill, P. Method of altering the alkaloid composition in poppy plants. International patent WO/2005/107436 (2005).

  10. Wilmouth, R.C. et al. Structure 10, 93–103 (2002).

    Article  CAS  Google Scholar 

  11. Lister, D.L., Kanungo, G., Rathbone, D.A. & Bruce, N.C. FEMS Microbiol. Lett. 181, 137–144 (1999).

    Article  CAS  Google Scholar 

  12. Craig, D.H., Moody, P.C.E., Bruce, N.C. & Scrutton, N.S. Biochemistry 37, 7598–7607 (1998).

    Article  CAS  Google Scholar 

  13. Ishida, T., Yano, M. & Toki, S. Drug Metab. Dispos. 19, 895–899 (1991).

    CAS  PubMed  Google Scholar 

  14. Tiainen, P., Myllyharju, J. & Koivunen, P. J. Biol. Chem. 280, 1142–1148 (2005).

    Article  CAS  Google Scholar 

  15. Nielsen, B., Röe, J. & Brochmann-Hanssen, E. Planta Med. 48, 205–206 (1983).

    Article  CAS  Google Scholar 

  16. Brochmann-Hanssen, E. Planta Med. 50, 343–345 (1984).

    Article  CAS  Google Scholar 

  17. De Carolis, E. & De Luca, V. Phytochemistry 36, 1093–1107 (1994).

    Article  CAS  Google Scholar 

  18. Hausinger, R.P. Crit. Rev. Biochem. Mol. Biol. 39, 21–68 (2004).

    Article  CAS  Google Scholar 

  19. Clifton, I.J. et al. J. Inorg. Biochem. 100, 644–669 (2006).

    Article  CAS  Google Scholar 

  20. Loenarz, C. & Schofield, C.J. Nat. Chem. Biol. 4, 152–156 (2008).

    Article  CAS  Google Scholar 

  21. Rapoport, R., Hanukoglu, I. & Sklan, D. Anal. Biochem. 218, 309–313 (1994).

    Article  CAS  Google Scholar 

  22. International Narcotics Control Board. Narcotic drugs: estimated world requirements for 2007; statistics for 2005 (E/INCB/2006/2). (United Nations Publications, 2006).

  23. Hawkins, K.M. & Smolke, C.D. Nat. Chem. Biol. 4, 564–573 (2008).

    Article  CAS  Google Scholar 

  24. Minami, H. et al. Proc. Natl. Acad. Sci. USA 105, 7393–7398 (2008).

    Article  CAS  Google Scholar 

  25. Parker, H.I., Blaschke, G. & Rapoport, H. J. Am. Chem. Soc. 94, 1276–1282 (1972).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to D. Kumar (Yale University) for the pTRV1 and pTRV2 vectors, V. Irish (Yale University) for the pTRV2-PapPDS construct, the Canadian National Research Council Plant Biotechnology Institute for hosting our sequence data on their FIESTA2 annotation platform, and Sanofi-Aventis for the gift of the opium poppy varieties and the alkaloid standards used in this work. We also thank K. Zulak, R. Bourgault and J. Ziegler for technical assistance with cDNA library construction, microarray preparation and mass spectrometry, respectively. J.M.H. is the recipient of an Alberta Ingenuity Graduate Scholarship. Funding for this work was provided through a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada and a Canada Research Chair in Plant Metabolic Processes Biotechnology, both awarded to P.J.F.

Author information

Authors and Affiliations

Authors

Contributions

J.M.H. and P.J.F. contributed equally to all aspects of the experimental design and execution, and the preparation of the manuscript.

Corresponding author

Correspondence to Peter J Facchini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13, Supplementary Tables 1–3 and Supplementary Methods (PDF 1475 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagel, J., Facchini, P. Dioxygenases catalyze the O-demethylation steps of morphine biosynthesis in opium poppy. Nat Chem Biol 6, 273–275 (2010). https://doi.org/10.1038/nchembio.317

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.317

  • Springer Nature America, Inc.

This article is cited by

Navigation