Skip to main content
Log in

CRISPR–Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters

  • Brief Communication
  • Published:

From Nature Chemical Biology

View current issue Submit your manuscript

Abstract

Here we report an efficient CRISPR–Cas9 knock-in strategy to activate silent biosynthetic gene clusters (BGCs) in streptomycetes. We applied this one-step strategy to activate multiple BGCs of different classes in five Streptomyces species and triggered the production of unique metabolites, including a novel pentangular type II polyketide in Streptomyces viridochromogenes. This potentially scalable strategy complements existing activation approaches and facilitates discovery efforts to uncover new compounds with interesting bioactivities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: CRISPR–Cas9-based promoter knock-in strategy to activate silent biosynthetic gene clusters in streptomycetes.
Figure 2: Activation of biosynthetic gene clusters in multiple streptomycetes.
Figure 3: Activation of type II PKS biosynthetic gene cluster in S. viridochromogenes yields a novel pigmented compound.

Similar content being viewed by others

References

  1. Rutledge, P.J. & Challis, G.L. Nat. Rev. Microbiol. 13, 509–523 (2015).

    Article  CAS  Google Scholar 

  2. Luo, Y., Cobb, R.E. & Zhao, H. Curr. Opin. Biotechnol. 30, 230–237 (2014).

    Article  CAS  Google Scholar 

  3. Kang, H.S., Charlop-Powers, Z. & Brady, S.F. ACS Synth. Biol. 5, 1002–1010 (2016).

    Article  CAS  Google Scholar 

  4. Cobb, R.E. & Zhao, H. Nat. Biotechnol. 30, 405–406 (2012).

    Article  CAS  Google Scholar 

  5. Zhang, M.M., Wang, Y., Ang, E.L. & Zhao, H. Nat. Prod. Rep. 33, 963–987 (2016).

    Article  CAS  Google Scholar 

  6. Doudna, J.A. & Charpentier, E. Science 346, 1258096 (2014).

    Article  Google Scholar 

  7. Sander, J.D. & Joung, J.K. Nat. Biotechnol. 32, 347–355 (2014).

    Article  CAS  Google Scholar 

  8. Cobb, R.E., Wang, Y. & Zhao, H. ACS Synth. Biol. 4, 723–728 (2015).

    Article  CAS  Google Scholar 

  9. Huang, H., Zheng, G., Jiang, W., Hu, H. & Lu, Y. Acta Biochim. Biophys. Sin. (Shanghai) 47, 231–243 (2015).

    Article  CAS  Google Scholar 

  10. Tong, Y., Charusanti, P., Zhang, L., Weber, T. & Lee, S.Y. ACS Synth. Biol. 4, 1020–1029 (2015).

    Article  CAS  Google Scholar 

  11. Zeng, H. et al. Appl. Microbiol. Biotechnol. 99, 10575–10585 (2015).

    Article  CAS  Google Scholar 

  12. Olano, C. et al. Microb. Biotechnol. 7, 242–256 (2014).

    Article  CAS  Google Scholar 

  13. Bruheim, P., Sletta, H., Bibb, M.J., White, J. & Levine, D.W. J. Ind. Microbiol. Biotechnol. 28, 103–111 (2002).

    Article  CAS  Google Scholar 

  14. Malpartida, F., Niemi, J., Navarrete, R. & Hopwood, D.A. Gene 93, 91–99 (1990).

    Article  CAS  Google Scholar 

  15. Wang, W. et al. Appl. Environ. Microbiol. 79, 4484–4492 (2013).

    Article  CAS  Google Scholar 

  16. Luo, Y., Zhang, L., Barton, K.W. & Zhao, H. ACS Synth. Biol. 4, 1001–1010 (2015).

    Article  CAS  Google Scholar 

  17. Weber, T. et al. Nucleic Acids Res. 43, W237–W243 (2015).

    Article  CAS  Google Scholar 

  18. Liu, W.T. et al. J. Antibiot. (Tokyo) 67, 99–104 (2014).

    Article  CAS  Google Scholar 

  19. Luo, Y. et al. Nat. Commun. 4, 2894 (2013).

    Article  Google Scholar 

  20. Moree, W.J. et al. ACS Chem. Biol. 9, 2300–2308 (2014).

    Article  CAS  Google Scholar 

  21. Okuhara, M. et al. J. Antibiot. (Tokyo) 33, 13–17 (1980).

    Article  CAS  Google Scholar 

  22. Eliot, A.C. et al. Chem. Biol. 15, 765–770 (2008).

    Article  CAS  Google Scholar 

  23. Jomaa, H. et al. Science 285, 1573–1576 (1999).

    Article  CAS  Google Scholar 

  24. Lackner, G. et al. J. Am. Chem. Soc. 129, 9306–9312 (2007).

    Article  CAS  Google Scholar 

  25. Hillenmeyer, M.E., Vandova, G.A., Berlew, E.E. & Charkoudian, L.K. Proc. Natl. Acad. Sci. USA 112, 13952–13957 (2015).

    Article  CAS  Google Scholar 

  26. Kieser, T., Bibb, M.J., Buttner, M.J., Chater, K.F. & Hopwood, D.A. Practical Streptomyces Genetics (John Innes Foundation, Norwich, UK, 2000).

  27. Rhee, K.-H. & Davies, J. J. Microbiol. Biotechnol. 16, 1841–1848 (2006).

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the National Institutes of Health (GM077596) (H.Z.), the A*STAR Visiting Investigator Program (H.Z.), and the National Research Foundation, Singapore (NRF2013-THE001-094) (M.M.Z., F.T.W., Y.H.L., E.L.A. and H.Z.). NMR data collection at the UIUC IGB Core was funded by NIH (S10-RR028833). Conjugative donor strains of E. coli were gifted by Prof. William Metcalf at UIUC. We thank members of the Zhao laboratory in UIUC, co-workers in MEL and MERL in A*STAR for constructive comments, Dr. Xudong Guan and Dr. Lingyang Zhu from UIUC for assisting with NMR data acquisition, and Dr. Ying Swan Ho from BTI, A*STAR for HRMS data acquisition.

Author information

Authors and Affiliations

Authors

Contributions

M.M.Z., F.T.W., and H.Z. conceived and designed the research. M.M.Z., F.T.W., Y.W., E.H., W.L.Y., R.E.C., and B.E. performed the molecular biology, conjugation and fermentation experiments. S.L. and Y.H.L. performed structure elucidation of compounds. M.M.Z., F.T.W., E.L.A., and H.Z. analyzed the data. M.M.Z., F.T.W., and H.Z. wrote the manuscript.

Corresponding author

Correspondence to Huimin Zhao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–8, Supplementary Figure 1–17 and Supplementary Note (PDF 3726 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Wong, F., Wang, Y. et al. CRISPR–Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters. Nat Chem Biol 13, 607–609 (2017). https://doi.org/10.1038/nchembio.2341

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2341

  • Springer Nature America, Inc.

This article is cited by

Navigation