Skip to main content
Log in

Not all quiet on the noise front

  • Commentary
  • Published:

From Nature Chemical Biology

View current issue Submit your manuscript

Phenotypic diversity exists even within isogenic populations of cells. Such nongenetic individuality may have wide implications for our understanding of many biological processes. The field of study concerned with the investigation of nongenetic individuality, also known as the 'biology of noise', is ripe with exciting scientific opportunities and challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Biochemical noise percolates to cellular phenotypes through complex networks, generating nongenetic individuality.
Figure 2: Different steps in gene expression modulate protein variability.
Figure 3: Nongenetic individuality can have important consequences for cell-cell communication and cellular fates in multicellular structures.

Marina Corral

References

  1. Raser, J.M. & O'Shea, E.K. Science 309, 2010–2013 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. McAdams, H.H. & Arkin, A. Trends Genet. 15, 65–69 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Bigger, W.B. Lancet 2, 497–500 (1944).

    Article  Google Scholar 

  4. Moyed, H.S. & Broderick, S.H. J. Bacteriol. 166, 399–403 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Spudich, J.L. & Koshland, D.E. Nature 262, 467–471 (1976).

    Article  CAS  PubMed  Google Scholar 

  6. Korobkova, E., Emonet, T., Vilar, J.M.G., Shimizu, T.S. & Cluzel, P. Nature 428, 574–578 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Elowitz, M.B., Levine, A.J., Siggia, E.D. & Swain, P.S. Science 297, 1183–1186 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Golding, I., Paulsson, J., Zawilski, S.M. & Cox, E.C. Cell 123, 1025–1036 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Velculescu, V.E. et al. Cell 88, 243–251 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Thattai, M. & van Oudenaarden, A. Proc. Natl. Acad. Sci. USA 98, 8614–8619 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Newman, J.R.S. et al. Nature 441, 840–846 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Volfson, D. et al. Nature 439, 861–864 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Novick, A. & Weiner, M. Proc. Natl. Acad. Sci. USA 43, 553–566 (1957).

    Article  CAS  PubMed  Google Scholar 

  14. Suel, G.M., Garcia-Ojalvo, J., Liberman, L.M. & Elowitz, M.B. Nature 440, 545–550 (2006).

    Article  Google Scholar 

  15. Balaban, N.Q., Merrin, J., Chait, R., Kowalik, L. & Leibler, S. Science 305, 1622–1625 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Avery, S.V. Nat. Rev. Microbiol. 4, 577–587 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Hamer, R.D., Nicholas, S.C., Tranchina, D., Lamb, T.D. & Jarvinen, J.L.P. Vis. Neurosci. 22, 417–436 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cohen, D. J. Theor. Biol. 16, 1–14 (1967).

    Article  CAS  PubMed  Google Scholar 

  19. Danforth, B.N. Proc. R. Soc. Lond. B 266, 1985–1994 (1999).

    Article  Google Scholar 

  20. Chai, Y.R., Chu, F., Kolter, R. & Losick, R. Mol. Microbiol. 67, 254–263 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Scott, S.A., Brooks, J.D., Rakonjac, J., Walker, K.M.R. & Flint, S.H. Int. J. Dairy Technol. 60, 109–117 (2007).

    Article  CAS  Google Scholar 

  22. Li, L. & Xie, T. Annu. Rev. Cell Dev. Biol. 21, 605–631 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Iwasaki, H. & Suda, T. Cancer Sci. 100, 1166–1172 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Bollenbach, T. et al. Development 135, 1137–1146 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Spencer, S.L., Gaudet, S., Albeck, J.G., Burke, J.M. & Sorger, P.K. Nature 459, 428–432 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cohen, A.A. et al. Science 322, 1511–1516 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Bahar, R. et al. Nature 441, 1011–1014 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Somel, M., Khaitovich, P., Bahn, S., Paabo, S. & Lachmann, M. Curr. Biol. 16, R359–R360 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Herndon, L.A. et al. Nature 419, 808–814 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Kirkwood, T.B. Cell 120, 437–447 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Xue, H. et al. Mol. Syst. Biol. 3, 147 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Raj, A., van den Bogaard, P., Rifkin, S.A., van Oudenaarden, A. & Tyagi, S. Nat. Methods 5, 877–879 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Roy, S., Lim, H.M., Liu, M.F. & Adhya, S. EMBO J. 23, 869–875 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Grunwald, D., Singer, R.H. & Czaplinski, K. Methods Enzymol. 448, 553–577 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Steward-Ornstein for his comments on this commentary. This work was supported by the University of California, San Francisco Program for Breakthrough Biomedical Research and by a US National Institutes of Health grant (GM086379) to H.E.-S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hana El-Samad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCullagh, E., Farlow, J., Fuller, C. et al. Not all quiet on the noise front. Nat Chem Biol 5, 699–704 (2009). https://doi.org/10.1038/nchembio.222

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.222

  • Springer Nature America, Inc.

This article is cited by

Navigation