Skip to main content
Log in

Addicting diverse bacteria to a noncanonical amino acid

  • Brief Communication
  • Published:

From Nature Chemical Biology

View current issue Submit your manuscript

Abstract

Engineered orthogonal translation systems have greatly enabled the expansion of the genetic code using noncanonical amino acids (NCAAs). However, the impact of NCAAs on organismal evolution remains unclear, in part because it is difficult to force the adoption of new genetic codes in organisms. By reengineering TEM-1 β-lactamase to be dependent on a NCAA, we maintained bacterial NCAA dependence for hundreds of generations without escape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Characterization of NCAA dependent β-lactamase variants.
Figure 2: β-lactamase variant TEM-1.B9 maintained NCAA dependence in different bacterial species during serial culture.

Similar content being viewed by others

Accession codes

Primary accessions

NCBI Reference Sequence

Protein Data Bank

References

  1. Wong, J.T. Proc. Natl. Acad. Sci. USA 80, 6303–6306 (1983).

    Article  CAS  Google Scholar 

  2. Rovner, A.J. et al. Nature 518, 89–93 (2015).

    Article  CAS  Google Scholar 

  3. Mandell, D.J. et al. Nature 518, 55–60 (2015).

    Article  CAS  Google Scholar 

  4. Lemeignan, B., Sonigo, P. & Marlière, P. J. Mol. Biol. 231, 161–166 (1993).

    Article  CAS  Google Scholar 

  5. Chin, J.W. et al. J. Am. Chem. Soc. 124, 9026–9027 (2002).

    Article  CAS  Google Scholar 

  6. Wang, J., Xie, J. & Schultz, P.G. J. Am. Chem. Soc. 128, 8738–8739 (2006).

    Article  CAS  Google Scholar 

  7. Xie, J., Supekova, L. & Schultz, P.G. ACS Chem. Biol. 2, 474–478 (2007).

    Article  CAS  Google Scholar 

  8. Liu, C.C. & Schultz, P.G. Annu. Rev. Biochem. 79, 413–444 (2010).

    Article  CAS  Google Scholar 

  9. Hammerling, M.J. et al. Nat. Chem. Biol. 10, 178–180 (2014).

    Article  CAS  Google Scholar 

  10. Bacher, J.M., Bull, J.J. & Ellington, A.D. BMC Evol. Biol. 3, 24 (2003).

    Article  Google Scholar 

  11. Bacher, J.M. & Ellington, A.D. J. Bacteriol. 183, 5414–5425 (2001).

    Article  CAS  Google Scholar 

  12. Wang, Q. et al. ChemBioChem 15, 1744–1749 (2014).

    Article  CAS  Google Scholar 

  13. Kato, Y. PeerJ 3, e1247 (2015).

    Article  Google Scholar 

  14. Cooley, R.B. et al. Biochemistry 53, 1916–1924 (2014).

    Article  CAS  Google Scholar 

  15. Sakamoto, K. et al. Structure 17, 335–344 (2009).

    Article  CAS  Google Scholar 

  16. Ohtake, K. et al. Sci. Rep. 5, 9762 (2015).

    Article  CAS  Google Scholar 

  17. Bradford, P.A. Clin. Microbiol. Rev. 14, 933–951 (2001).

    Article  CAS  Google Scholar 

  18. Fonzé, E. et al. Acta Crystallogr. D Biol. Crystallogr. 51, 682–694 (1995).

    Article  Google Scholar 

  19. Baba, T. et al. Mol. Syst. Biol. 2, 2006.0008 (2006).

    Article  Google Scholar 

  20. Lajoie, M.J. et al. Science 342, 357–360 (2013).

    Article  CAS  Google Scholar 

  21. Thyer, R., Robotham, S.A., Brodbelt, J.S. & Ellington, A.D. J. Am. Chem. Soc. 137, 46–49 (2015).

    Article  CAS  Google Scholar 

  22. Gibson, D.G. et al. Nat. Methods 6, 343–345 (2009).

    Article  CAS  Google Scholar 

  23. Hashimoto-Gotoh, T. et al. Gene 241, 185–191 (2000).

    Article  CAS  Google Scholar 

  24. Chung, C.T., Niemela, S.L. & Miller, R.H. Proc. Natl. Acad. Sci. USA 86, 2172–2175 (1989).

    Article  CAS  Google Scholar 

  25. Stec, B., Holtz, K.M., Wojciechowski, C.L. & Kantrowitz, E.R. Acta Crystallogr. D Biol. Crystallogr. 61, 1072–1079 (2005).

    Article  Google Scholar 

  26. Labute, P. Proteins 75, 187–205 (2009).

    Article  CAS  Google Scholar 

  27. Labute, P. J. Chem. Inf. Model. 50, 792–800 (2010).

    Article  CAS  Google Scholar 

  28. Clark, A.M. & Labute, P. J. Chem. Inf. Model. 47, 1933–1944 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the following grants: National Security Science and Engineering Faculty Fellowship grant FA9550-10-1-0169 to A.D.E. Welch Foundation grant F-1654. Defense Advanced Research Projects Agency N66001-14-2-4051 to A.D.E. Air Force Office of Scientific Research grant FA9550-14-1-0089 to A.D.E. Defense Advanced Research Projects Agency HR0011-15-C0095 to A.D.E.

Author information

Authors and Affiliations

Authors

Contributions

D.S.T. designed and performed experiments and wrote the manuscript. J.W.E. designed experiments and wrote the manuscript. R.T. designed experiments and wrote the manuscript. B.W. screened TEM-1 variants. M.T.F. screened TEM-1 variants. J.G. performed computational analysis using the Molecular Operating Environment. A.D.E. directed experimental work and wrote the manuscript.

Corresponding author

Correspondence to Andrew D Ellington.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–14 and Supplementary Tables 1–7. (PDF 1913 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tack, D., Ellefson, J., Thyer, R. et al. Addicting diverse bacteria to a noncanonical amino acid. Nat Chem Biol 12, 138–140 (2016). https://doi.org/10.1038/nchembio.2002

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2002

  • Springer Nature America, Inc.

This article is cited by

Navigation