Skip to main content
Log in

Membrane curvature bends the laws of physics and chemistry

  • Commentary
  • Published:

From Nature Chemical Biology

View current issue Submit your manuscript

A 'chemical biology of cellular membranes' must capture the way that mesoscale perturbations tune the biochemical properties of constituent lipid and protein molecules and vice versa. Whereas the classical paradigm focuses on chemical composition, dynamic modulation of the physical shape or curvature of a membrane is emerging as a complementary and synergistic modus operandi for regulating cellular membrane biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Lipid membranes.
Figure 2: Membrane composition and curvature contribute synergistically to the trafficking and sorting of membrane-associated proteins.
Figure 3: Separate motifs on the same protein could be envisaged to regulate its spatial organization and function independently in a curvature-dependent manner.

References

  1. Madsen, K.L., Bhatia, V.K., Gether, U. & Stamou, D. FEBS Lett. 584, 1848–1855 (2010).

    Article  CAS  Google Scholar 

  2. Baumgart, T., Capraro, B.R., Zhu, C. & Das, S.L. Annu. Rev. Phys. Chem. 62, 483–506 (2011).

    Article  CAS  Google Scholar 

  3. Bigay, J. & Antonny, B. Dev. Cell 23, 886–895 (2012).

    Article  CAS  Google Scholar 

  4. McMahon, H.T. & Boucrot, E. J. Cell Sci. 128, 1065–1070 (2015).

    Article  CAS  Google Scholar 

  5. Sprong, H., van der Sluijs, P. & van Meer, G. Nat. Rev. Mol. Cell Biol. 2, 504–513 (2001).

    Article  CAS  Google Scholar 

  6. Phillips, R., Ursell, T., Wiggins, P. & Sens, P. Nature 459, 379–385 (2009).

    Article  CAS  Google Scholar 

  7. Zimmerberg, J. & Kozlov, M.M. Nat. Rev. Mol. Cell Biol. 7, 9–19 (2006).

    Article  CAS  Google Scholar 

  8. Andersen, O.S. & Koeppe, R.E. Annu. Rev. Biophys. Biomol. Struct. 36, 107–130 (2007).

    Article  CAS  Google Scholar 

  9. daCosta, C.J.B., Dey, L., Therien, J.P.D. & Baenziger, J.E. Nat. Chem. Biol. 9, 701–707 (2013).

    Article  CAS  Google Scholar 

  10. Brown, M.F. Biochemistry 51, 9782–9795 (2012).

    Article  CAS  Google Scholar 

  11. Tonnesen, A., Christensen, S.M., Tkach, V. & Stamou, D. Biophys. J. 106, 201–209 (2014).

    Article  CAS  Google Scholar 

  12. Irannejad, R. et al. Nature 495, 534–538 (2013).

    Article  CAS  Google Scholar 

  13. Reynwar, B.J. et al. Nature 447, 461–464 (2007).

    Article  CAS  Google Scholar 

  14. Parton, D.L., Klingelhoefer, J.W. & Sansom, M.S. Biophys. J. 101, 691–699 (2011).

    Article  CAS  Google Scholar 

  15. Mukherjee, S. & Maxfield, F.R. Traffic 1, 203–211 (2000).

    Article  CAS  Google Scholar 

  16. Callan-Jones, A., Sorre, B. & Bassereau, P. Cold Spring Harb. Perspect. Biol. 3, a004648 (2011).

    Article  Google Scholar 

  17. Simons, K. & Gerl, M.J. Nat. Rev. Mol. Cell Biol. 11, 688–699 (2010).

    Article  CAS  Google Scholar 

  18. Weise, K., Triola, G., Brunsveld, L., Waldmann, H. & Winter, R. Biochemistry 131, 1557–1564 (2009).

    CAS  Google Scholar 

  19. Larsen, J.B. et al. Nat. Chem. Biol. 11, 192–194 (2015).

    Article  CAS  Google Scholar 

  20. Domanov, Y.A. et al. Proc. Natl. Acad. Sci. USA 108, 12605–12610 (2011).

    Article  CAS  Google Scholar 

  21. Lemmon, M.A. Nat. Rev. Mol. Cell Biol. 9, 99–111 (2008).

    Article  CAS  Google Scholar 

  22. Bigay, J., Gounon, P., Robineau, S. & Antonny, B. Nature 426, 563–566 (2003).

    Article  CAS  Google Scholar 

  23. Peter, B.J. et al. Science 303, 495–499 (2004).

    Article  CAS  Google Scholar 

  24. Hatzakis, N.S. et al. Nat. Chem. Biol. 5, 835–841 (2009).

    Article  CAS  Google Scholar 

  25. Campelo, F. & Kozlov, M.M. PLoS Comput. Biol. 10, e1003556 (2014).

    Article  Google Scholar 

  26. Demchenko, A.P., Mely, Y., Duportail, G. & Klymchenko, A.S. Biophys. J. 96, 3461–3470 (2009).

    Article  CAS  Google Scholar 

  27. Cui, H., Lyman, E. & Voth, G.A. Biophys. J. 100, 1271–1279 (2011).

    Article  CAS  Google Scholar 

  28. Vanni, S., Hirose, H., Barelli, H., Antonny, B. & Gautier, R. Nat. Commun. 5, 4916 (2014).

    Article  CAS  Google Scholar 

  29. Drin, G. et al. Nat. Struct. Mol. Biol. 14, 138–146 (2007).

    Article  CAS  Google Scholar 

  30. Reis, P., Holmberg, K., Watzke, H., Leser, M.E. & Miller, R. Adv. Colloid Interface Sci. 147–148, 237–250 (2009).

    Article  Google Scholar 

  31. Cajal, Y., Svendsen, A., Girona, V., Patkar, S.A. & Alsina, M.A. Biochemistry 39, 413–423 (2000).

    Article  CAS  Google Scholar 

  32. Ahyayauch, H., Villar, A.V., Alonso, A. & Goni, F.M. Biochemistry 44, 11592–11600 (2005).

    Article  CAS  Google Scholar 

  33. Groves, J.T. & Kuriyan, J. Nat. Struct. Mol. Biol. 17, 659–665 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Stamou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iversen, L., Mathiasen, S., Larsen, J. et al. Membrane curvature bends the laws of physics and chemistry. Nat Chem Biol 11, 822–825 (2015). https://doi.org/10.1038/nchembio.1941

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1941

  • Springer Nature America, Inc.

This article is cited by

Navigation