Skip to main content
Log in

Brownian search-and-catch mechanism for myosin-VI steps

  • Brief Communication
  • Published:

From Nature Chemical Biology

View current issue Submit your manuscript

Abstract

The cargo transporter myosin-VI processively walks along actin filaments using its two heads. Here we use single-molecule nanometry to show that the strong binding by myosin heads to actin is greatly accelerated (∼30-fold) when backward strain is applied to weakly bound heads during the actin search. We propose that the myosin head searches for the forward actin target by Brownian motion and catches the actin in a strain-dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Rapid scan experiment and binding events.
Figure 2: Strain-dependent asymmetric catch (strong binding) of myosin-VI.

Similar content being viewed by others

References

  1. Yildiz, A. et al. Science 300, 2061–2065 (2003).

    Article  CAS  Google Scholar 

  2. Yildiz, A., Tomishige, M., Vale, R.D. & Selvin, P.R. Science 303, 676–678 (2004).

    Article  CAS  Google Scholar 

  3. Reck-Peterson, S.L. et al. Cell 126, 335–348 (2006).

    Article  CAS  Google Scholar 

  4. Altman, D., Sweeney, H.L. & Spudich, J.A. Cell 116, 737–749 (2004).

    Article  CAS  Google Scholar 

  5. Veigel, C., Schmitz, S., Wang, F. & Sellers, J.R. Nat. Cell Biol. 7, 861–869 (2005).

    Article  CAS  Google Scholar 

  6. Sun, Y. et al. Mol. Cell 28, 954–964 (2007).

    Article  CAS  Google Scholar 

  7. Yildiz, A. et al. J. Biol. Chem. 279, 37223–37226 (2004).

    Article  CAS  Google Scholar 

  8. Altman, D., Goswami, D., Hasson, T., Spudich, J.A. & Mayor, S. PLoS Biol. 5, e210 (2007).

    Article  Google Scholar 

  9. Oguchi, Y. et al. Proc. Natl. Acad. Sci. USA 105, 7714–7719 (2008).

    Article  CAS  Google Scholar 

  10. Dunn, A.R. & Spudich, J.A. Nat. Struct. Mol. Biol. 14, 246–248 (2007).

    Article  CAS  Google Scholar 

  11. Shiroguchi, K. & Kinosita, K. Jr. Science 316, 1208–1212 (2007).

    Article  CAS  Google Scholar 

  12. De La Cruz, E.M., Ostap, E.M. & Sweeney, H.L. J. Biol. Chem. 276, 32373–32381 (2001).

    Article  CAS  Google Scholar 

  13. Brenner, B. Proc. Natl. Acad. Sci. USA 88, 10490–10494 (1991).

    Article  CAS  Google Scholar 

  14. Geeves, M.A. Biochem. J. 274, 1–14 (1991).

    Article  CAS  Google Scholar 

  15. Iwaki, M. et al. Biophys. J. 90, 3643–3652 (2006).

    Article  CAS  Google Scholar 

  16. Sweeney, H.L. et al. EMBO J. 26, 2682–2692 (2007).

    Article  CAS  Google Scholar 

  17. Yount, R.G., Lawson, D. & Rayment, I. Biophys. J. 68 (suppl. 4): 44S–49S (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Holmes, K.C., Angert, I., Kull, F.J., Jahn, W. & Schroder, R.R. Nature 425, 423–427 (2003).

    Article  CAS  Google Scholar 

  19. Huxley, A.F. Prog. Biophys. Biophys. Chem. 7, 255–318 (1957).

    Article  CAS  Google Scholar 

  20. Kolomeisky, A.B. & Fisher, M.E. Annu. Rev. Phys. Chem. 58, 675–695 (2007).

    Article  CAS  Google Scholar 

  21. Astumian, R.D. Sci. Am. 285, 56–64 (2001).

    Article  CAS  Google Scholar 

  22. Ménétrey, J., Llinas, P., Mukherjea, M., Sweeney, H.L. & Houdusse, A. Cell 131, 300–308 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Nishikawa, H. Takagi and Y. Togashi for valuable discussion; P. Karagiannis for reading the manuscript; and colleagues of the Yanagida laboratory for comments and discussion. The work was supported by the Yuragi Project and Grant-in-Aid for Scientific Research on Innovative Areas of the Ministry of Education, Culture, Sports, Science and Technology (MEXT) and by the Soft Nanomachine Project of the Japan Science and Technology Agency (JST).

Author information

Authors and Affiliations

Authors

Contributions

M.I. designed and performed all experiments and analyzed data. A.H.I. purified the wild-type construct of myosin-VI. T.S. contributed to data analysis and manuscript writing. R.C. and T.Y. discussed the concept of the model. The manuscript was written by M.I. and T.Y., and all authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Toshio Yanagida.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Methods (PDF 340 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwaki, M., Iwane, A., Shimokawa, T. et al. Brownian search-and-catch mechanism for myosin-VI steps. Nat Chem Biol 5, 403–405 (2009). https://doi.org/10.1038/nchembio.171

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.171

  • Springer Nature America, Inc.

This article is cited by

Navigation