Skip to main content
Log in

Chemo-enzymatic fluorination of unactivated organic compounds

  • Brief Communication
  • Published:

From Nature Chemical Biology

View current issue Submit your manuscript

Abstract

Fluorination has gained an increasingly important role in drug discovery and development. Here we describe a versatile strategy that combines cytochrome P450–catalyzed oxygenation with deoxofluorination to achieve mono- and polyfluorination of nonreactive sites in a variety of organic scaffolds. This procedure was applied for the rapid identification of fluorinated drug derivatives with enhanced membrane permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Cytochrome P450-based approach for selective fluorination of organic molecules.
Figure 2: Chemo-enzymatic fluorination of organic molecules.
Figure 3: Chemo-enzymatic methoxy-to-fluorine transformation.

Similar content being viewed by others

References

  1. Muller, K., Faeh, C. & Diederich, F. Science 317, 1881–1886 (2007).

    Article  Google Scholar 

  2. Park, B.K., Kitteringham, N.R. & O'Neill, P.M. Annu. Rev. Pharmacol. Toxicol. 41, 443–470 (2001).

    Article  CAS  Google Scholar 

  3. Bohm, H.J. et al. ChemBioChem 5, 637–643 (2004).

    Article  Google Scholar 

  4. Kirsch, P. Modern Fluoroorganic Chemistry (Wiley-VCH, Weinheim, Germany, 2004).

    Book  Google Scholar 

  5. Shimizu, M. & Hiyama, T. Angew. Chem. Int. Ed. 44, 214–231 (2005).

    Article  CAS  Google Scholar 

  6. Ma, J.A. & Cahard, D. Chem. Rev. 104, 6119–6146 (2004).

    Article  CAS  Google Scholar 

  7. Bobbio, C. & Gouverneur, V. Org. Biomol. Chem. 4, 2065–2075 (2006).

    Article  CAS  Google Scholar 

  8. Günter, H. J. Fluor. Chem. 125, 875–894 (2004).

    Article  Google Scholar 

  9. Iacazio, G. & Réglier, M. Tetrahedron Asymmetry 16, 3633–3639 (2005).

    Article  CAS  Google Scholar 

  10. Warman, A.J. et al. Biochem. Soc. Trans. 33, 747–753 (2005).

    Article  CAS  Google Scholar 

  11. Fasan, R., Meharenna, Y.T., Snow, C.D., Poulos, T.L. & Arnold, F.H. J. Mol. Biol. 383, 1069–1080 (2008).

    Article  CAS  Google Scholar 

  12. Mikolajczyk, M., Mikina, M. & Zurawinski, R. Pure Appl. Chem. 71, 473–480 (1999).

    Article  CAS  Google Scholar 

  13. Fujisawa, H., Fujiwara, T., Takeuchi, Y. & Omata, K. Chem. Pharm. Bull. (Tokyo) 53, 524–528 (2005).

    Article  CAS  Google Scholar 

  14. Singh, R.P. & Shreeve, J.M. Synthesis 17, 2561–2578 (2002).

    Google Scholar 

  15. Landwehr, M. et al. J. Am. Chem. Soc. 128, 6058–6059 (2006).

    Article  CAS  Google Scholar 

  16. Leuchtenberger, S., Beher, D. & Weggen, S. Curr. Pharm. Des. 12, 4337–4355 (2006).

    Article  CAS  Google Scholar 

  17. Feher, M. & Schmidt, J.M. J. Chem. Inf. Comput. Sci. 43, 218–227 (2003).

    Article  CAS  Google Scholar 

  18. Wong, T.S., Arnold, F.H. & Schwaneberg, U. Biotechnol. Bioeng. 85, 351–358 (2004).

    Article  CAS  Google Scholar 

  19. Hamman, M.A., Thompson, G.A. & Hall, S.D. Biochem. Pharmacol. 54, 33–41 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Shahgholi for assistance with the LC-MS and HRMS analyses. This work was supported by US National Institutes of Health grant GM068664 and US Department of Agriculture grant 2006-35505-16660 to F.H.A. and by the Jacobs Institute (Caltech). A.R. acknowledges the Deutsche Forschungsgemeinschaft for financial support.

Author information

Authors and Affiliations

Authors

Contributions

R.F. and F.H.A. conceived the project; R.F. and A.R. performed the experiments; all authors discussed the results; R.F. wrote the paper with help and edits from F.H.A. and A.R.

Corresponding author

Correspondence to Rudi Fasan.

Ethics declarations

Competing interests

R.F. and F.H.A. filed an international patent application (WO/2008/016709) entitled “Methods and systems for selective fluorination of organic molecules.” Some of the P450 enzymes described in this work are available commercially from Codexis, Inc. F.H.A. is a minor shareholder of Codexis and serves on the Codexis Science Advisory Board.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Tables 1 and 2, and Supplementary Methods (PDF 1238 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rentmeister, A., Arnold, F. & Fasan, R. Chemo-enzymatic fluorination of unactivated organic compounds. Nat Chem Biol 5, 26–28 (2009). https://doi.org/10.1038/nchembio.128

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.128

  • Springer Nature America, Inc.

This article is cited by

Navigation