Skip to main content

Advertisement

Log in

Two- and three-dimensional extended solids and metallization of compressed XeF2

  • Article
  • Published:

From Nature Chemistry

View current issue Submit your manuscript

Abstract

The application of pressure, internal or external, transforms molecular solids into extended solids with more itinerant electrons to soften repulsive interatomic interactions in a tight space. Examples include insulator-to-metal transitions in O2, Xe and I2, as well as molecular-to-non-molecular transitions in CO2 and N2. Here, we present new discoveries of novel two- and three-dimensional extended non-molecular phases of solid XeF2 and their metallization. At ∼50 GPa, the transparent linear insulating XeF2 transforms into a reddish two-dimensional graphite-like hexagonal layered structure of semiconducting XeF4. Above 70 GPa, it further transforms into a black three-dimensional fluorite-like structure of the first observed metallic XeF8 polyhedron. These simultaneously occurring molecular-to-non-molecular and insulator-to-metal transitions of XeF2 arise from the pressure-induced delocalization of non-bonded lone-pair electrons to sp3d2 hybridization in two-dimensional XeF4 and to p3d5 in three-dimensional XeF8 through the chemical bonding of all eight valence electrons in Xe and, thereby, fulfilling the octet rule at high pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Micro-photographs of XeF2 samples at high pressures.
Figure 2: Pressure dependence of Raman spectra of XeF2 (open red circles) and electrical resistance (closed blue circles) as a function of pressure.
Figure 3: Angle-resolved X-ray diffraction patterns of XeF2 phases to ∼100 GPa.
Figure 4: Crystal structures of graphite-like 2D and fluorite-like 3D extended phases.
Figure 5: Pressure dependence of the crystal structure and chemical bonds of the XeF2 phases.

Similar content being viewed by others

References

  1. Bartlett, N. Xenon hexafluoroplatinate(V) Xe+[PtF6]. Proc. Chem. Soc. 218 (1962).

  2. Graham, L., Graudejus, O., Jha, N. K. & Bartlett, N. Concerning the nature of XePtF6 . Coord. Chem. Rev. 197, 321–334 (2000).

    Article  CAS  Google Scholar 

  3. Grochala, W. Atypical compounds of gases, which have been called ‘noble’. Chem. Soc. Rev. 36, 1632–1655 (2007).

    Article  CAS  Google Scholar 

  4. Tramsek, M. & Zemva, B. Synthesis, properties and chemistry of xenon(II) fluoride. Acta Chim. Slov. 53, 105–116 (2006).

    CAS  Google Scholar 

  5. Brown, E. C., Cohen, A. & Gerber, R. Prediction of a linear polymer made of xenon and carbon. J. Chem. Phys. 122, 171101 (2005).

    Article  Google Scholar 

  6. Pauling, L. Angles between orthogonal spd bond orbitals with maximum strength. Proc. Natl Acad. Sci. 73, 1403–1405 (1976).

    Article  CAS  Google Scholar 

  7. Dixon, D. A., de Jong, W. A., Peterson, K. A., Christe, K. O. & Schrobilgen, G. J. Heats of formation of xenon fluorides and the fluxionality of XeF6 from high level electronic structure calculations. J. Am. Chem. Soc. 127, 8627–8634 (2005).

    Article  CAS  Google Scholar 

  8. Jortner, J., Rice, S. A. & Wilson, E. G. Speculation concerning the nature of binding in xenon fluorine compounds. J. Chem. Phys. 38, 2302–2303 (1963).

    Article  CAS  Google Scholar 

  9. Agron, P. A. et al. F. Xenon difluoride and the nature of the xenon–fluorine bond. Science 139, 842–844 (1963).

    Article  CAS  Google Scholar 

  10. Grochala, W., Hoffmann, R., Feng, J. & Ashcroft, N. W. The chemical imagination at work in very tight places. Angew. Chem. Int. Ed. 46, 3620–3642 (2007).

    Article  CAS  Google Scholar 

  11. Sidgwick, N. V. & Powell, H. M. Bakerian lecture. Stereochemical types and valency groups. Proc. R. Soc. Lond. A 176, 153–180 (1940).

    Article  CAS  Google Scholar 

  12. Gillespie, R. J. & Nyholm, R. S. Inorganic stereochemistry. Q. Rev. Chem. Soc. 11, 339–380 (1957).

    Article  CAS  Google Scholar 

  13. Andersson, S. On the stereochemistry of valence bonds and the structures of XeO3, XeF4 and XeF2 . Acta Cryst. B35, 1321–1324 (1979).

    Article  Google Scholar 

  14. Schwarz, U. & Syassen, K. The behavior of solid XeF2 under pressure. High Pressure Res. 9, 47–50 (1992).

    Article  Google Scholar 

  15. Ashcroft, N. W. Hydrogen dominant metallic alloys: high temperature superconductors? Phys. Rev. Lett. 92, 187002 (2004).

    Article  CAS  Google Scholar 

  16. Eremets, M. I., Triojan, I. A., Medvedev, S. A., Tse, J. S. & Yao, Y. Superconductivity in hydrogen dominant materials: silane. Science 319, 1506–1509 (2008).

    Article  CAS  Google Scholar 

  17. Reichlin, R. et al. Evidence for the insulator–metal transition in xenon from optical, X-ray and band-structure studies to 170 GPa. Phys. Rev. Lett. 62, 669–672 (1989).

    Article  CAS  Google Scholar 

  18. Goettel, K. A., Eggert, J. H., Silvera, I. F. & Moss, W. C. Optical evidence for the matallization of xenon at 132(5) GPa. Phys. Rev. Lett. 62, 665–668 (1989).

    Article  CAS  Google Scholar 

  19. Takemura, K., Sato, K., Fujihisa, H. & Onoda, M. Modulated structure of solid iodine during its molecular dissociation under high pressure. Nature 423, 971–974 (2003).

    Article  Google Scholar 

  20. Fujihisa, H., Fujii, Y., Takemura, K. & Shimomura, O. Structural aspects of dense solid halogens under high pressure studied by X-ray diffraction—molecular dissociation and metallization. J. Phys. Chem. Solids 56, 1439–1444 (1995).

    Article  CAS  Google Scholar 

  21. Burbank, R. D., Falconer, W. E. & Sunder, W. A. Crystal structure of krypton difluoride at −80 °C. Science 178, 1285–1286 (1972).

    Article  CAS  Google Scholar 

  22. Robinson, E. A., Johnson, S. A., Tang, T.-H. & Gillespie, R. J. Reinterpretation of the lengths of bonds to fluorine in terms of an almost ionic model. Inorg. Chem. 36, 3022–3030 (1997).

    Article  CAS  Google Scholar 

  23. Reich, S. & Thomsen, C. Raman spectroscopy of graphite. Phil. Trans. R. Soc. Lond. A 362, 2271–2288 (2004).

    Article  CAS  Google Scholar 

  24. Eremets, M. I. et al. Superconductivity of Xe at Mbar pressure. Phys. Rev. Lett. 85, 2797–2800 (2000).

    Article  CAS  Google Scholar 

  25. Eremets, M. I., Struzhkin, V. V., Mao, H. K. & Hemley, R. J. Superconductivity in boron. Science 293, 272–274 (2001).

    Article  CAS  Google Scholar 

  26. Shimizu, K., Ishikawa, H., Takao, D., Yagi, T. & Amaya, K. Superconductivity in compresed Li at 20 K. Nature 419, 597–599 (2002).

    Article  CAS  Google Scholar 

  27. Qazilbash, M. M. et al. Mott transition in VO2 revealed by infrared spectroscopy and nano-image. Science 318, 1750–1553 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Synchrotron X-ray diffraction studies were carried out at the GSECAR 13IDD and HPCAT 16BMD beam line at the Advanced Photon Source. The authors thank P. Dera, V. Prakapenka, O. Shebanova and A. Sengupta for their technical support. The present study was supported by DTRA (grant no. HDTRA1-09-1-0041), NSF-DMR (grant no. 0854618) and DOE-NNSA (no. DE-F603-97SF21388).

Author information

Authors and Affiliations

Authors

Contributions

M.K. carried out X-ray and Raman measurements and performed the analysis, including calculating the electronic structure. M.D. performed resistance measurements and analysis. C.-S.Y. was responsible for the overall design, direction and supervision of the project. All authors contributed to writing of the manuscript.

Corresponding author

Correspondence to Choong-Shik Yoo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2283 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, M., Debessai, M. & Yoo, CS. Two- and three-dimensional extended solids and metallization of compressed XeF2. Nature Chem 2, 784–788 (2010). https://doi.org/10.1038/nchem.724

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.724

  • Springer Nature Limited

This article is cited by

Navigation