Skip to main content

Advertisement

Log in

Regulation of calcium signals in the nucleus by a nucleoplasmic reticulum

  • Letter
  • Published:

From Nature Cell Biology

View current issue Submit your manuscript

Abstract

Calcium is a second messenger in virtually all cells and tissues1. Calcium signals in the nucleus have effects on gene transcription and cell growth that are distinct from those of cytosolic calcium signals; however, it is unknown how nuclear calcium signals are regulated. Here we identify a reticular network of nuclear calcium stores that is continuous with the endoplasmic reticulum and the nuclear envelope. This network expresses inositol 1,4,5-trisphosphate (InsP3) receptors, and the nuclear component of InsP3-mediated calcium signals begins in its locality. Stimulation of these receptors with a little InsP3 results in small calcium signals that are initiated in this region of the nucleus. Localized release of calcium in the nucleus causes nuclear protein kinase C (PKC) to translocate to the region of the nuclear envelope, whereas release of calcium in the cytosol induces translocation of cytosolic PKC to the plasma membrane. Our findings show that the nucleus contains a nucleoplasmic reticulum with the capacity to regulate calcium signals in localized subnuclear regions. The presence of such machinery provides a potential mechanism by which calcium can simultaneously regulate many independent processes in the nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: The nucleus of SKHep1 cells contains a nucleoplasmic reticulum.
Figure 2: SKHep1 cells express InsP3 receptors in the nucleoplasmic reticulum.
Figure 3: Nuclear calcium signals begin in the nucleoplasmic reticulum.
Figure 4: The nucleoplasmic reticulum provides localized release of calcium.
Figure 5: Nuclear and cytosolic calcium have distinct effects on PKC translocation.

Similar content being viewed by others

References

  1. Berridge, M.J., Lipp, P. & Bootman, M.D. The versatility and universality of calcium signalling. Nature Rev. Mol. Cell Biol. 1, 11–21 (2000).

    Article  CAS  Google Scholar 

  2. Pinton, P., Pozzan, T. & Rizzuto, R. The Golgi apparatus is an inositol 1,4,5-trisphosphate-sensitive Ca2+ store, with functional properties distinct from those of the endoplasmic reticulum. EMBO J. 17, 5298–5308 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jouaville, L.S., Ichas, F., Holmuhamedov, E.L., Camacho, P. & Lechleiter, J.D. Synchronization of calcium waves by mitochondrial substrates in Xenopus laevis oocytes. Nature 377, 438–441 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Stehno-Bittel, L., Perez-Terzic, C. & Clapham, D.E. Diffusion across the nuclear envelope inhibited by depletion of the nuclear Ca2+ store. Science 270, 1835–1838 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Perez-Terzic, C., Pyle, J., Jaconi, M., Stehno-Bittel, L. & Clapham, D.E. Conformational states of the nuclear pore complex induced by depletion of nuclear Ca2+ stores. Science 273, 1875–1877 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Chawla, S., Hardingham, G.E., Quinn, D.R. & Bading, H. CBP: a signal-regulated transcriptional coactivator controlled by nuclear calcium and CaM kinase IV. Science 281, 1505–1509 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Hardingham, G.E., Chawla, S., Johnson, C.M. & Bading, H. Distinct functions of nuclear and cytoplasmic calcium in the control of gene expression. Nature 385, 260–265 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Pusl, T. et al. Epidermal growth factor-mediated activation of the ETS-domain transcription factor Elk-1 requires nuclear calcium. J. Biol. Chem. 277, 27517–27527 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Divecha, N., Rhee, S.-G., Letcher, A.J. & Irvine, R.F. Phosphoinositide signalling enzymes in rat liver nuclei: phosphoinositidase C isoform β1 is specifically, but not predominantly, located in the nucleus. Biochem. J. 289, 617–620 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Malviya, A.N., Rogue, P. & Vincendon, G. Stereospecific inositol 1,4,5-[32P]trisphosphate binding to isolated rat liver nuclei: evidence for inositol trisphosphate receptor-mediated calcium release from the nucleus. Proc. Natl Acad. Sci. USA 87, 9270–9274 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Allbritton, N.L., Oancea, E., Kuhn, M.A. & Meyer, T. Source of nuclear calcium signals. Proc. Natl Acad. Sci. USA 91, 12458–12462 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lipp, P., Thomas, D., Berridge, M.J. & Bootman, M.D. Nuclear calcium signalling by individual cytoplasmic calcium puffs. EMBO J. 16, 7166–7173 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fox, J.L., Burgstahler, A.D. & Nathanson, M.H. Mechanism of long-range Ca2+ signalling in the nucleus of isolated rat hepatocytes. Biochem. J. 326, 491–495 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Denk, W., Strickler, J.H. & Webb, W.W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    Article  CAS  PubMed  Google Scholar 

  15. Williams, R.M., Zipfel, W.R. & Webb, W.W. Multiphoton microscopy in biological research. Curr. Opin. Chem. Biol. 5, 603–608 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Fricker, M., Hollinshead, M., White, N. & Vaux, D. Interphase nuclei of many mammalian cell types contain deep, dynamic, tubular membrane-bound invaginations of the nuclear envelope. J. Cell Biol. 136, 531–544 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wamhoff, B.R., Dixon, J.L. & Sturek, M. Atorvastatin treatment prevents alterations in coronary smooth muscle nuclear Ca2+ signaling in diabetic dyslipidemia. J. Vasc. Res. 39, 208–220 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Malgaroli, A., Milani, D., Meldolesi, J. & Pozzan, T. Fura-2 measurement of cytosolic free Ca2+ in monolayers and suspensions of various types of animal cells. J. Cell Biol. 105, 2145–2155 (1987).

    Article  CAS  PubMed  Google Scholar 

  19. Lui, P.P.Y., Kong, S.K., Kwok, T.T. & Lee, C.Y. The nucleus of HeLa cell contains tubular structures for Ca2+ signalling. Biochem. Biophys. Res. Commun. 247, 88–93 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Leite, M.F. et al. Molecular basis for pacemaker cells in epithelia. J. Biol. Chem. 277, 16313–16323 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Clark, E.A. & Brugge, J.S. Integrins and signal transduction pathways: the road taken. Science 268, 233–239 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Reilly, J.F. & Maher, P.A. Importin β-mediated nuclear import of fibroblast growth factor receptor: role in cell proliferation. J. Cell Biol. 152, 1307–1312 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lin, S.Y. et al. Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nature Cell Biol. 3, 802–808 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Hagar, R.E., Burgstahler, A.D., Nathanson, M.H. & Ehrlich, B.E. Type III InsP3 receptor channel stays open in the presence of increased calcium. Nature 396, 81–84 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhu, Q.Q., Schnabel, W.E. & Schupp, H. Formation and decay of nitronic acid in the photoarrangement of o-nitrobenzyl esters. J. Photochem. 36, 317–332 (1987).

    Article  Google Scholar 

  26. Gee, K.R., Wieboldt, R. & Hess, G.P. Synthesis and photochemistry of a new photolabile derivative of GABA. Neurotransmitter release and receptor activation in the microsecond time region. J. Am. Chem. Soc. 116, 8366–8367 (1994).

    Article  CAS  Google Scholar 

  27. Oancea, E., Teruel, M.N., Quest, A.F.G. & Meyer, T. Green fluorescent protein (GFP)-tagged cysteine-rich domains from protein kinase C as fluorescent indicators for diacylglycerol signaling in living cells. J. Cell Biol. 140, 485–498 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Teruel, M.N. & Meyer, T. Parallel single-cell monitoring of receptor-triggered membrane translocation of a calcium-sensing protein module. Science 295, 1910–1912 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Oancea, E. & Meyer, T. Protein kinase C as a molecular machine for decoding calcium and diacylglycerol signals. Cell 95, 307–318 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Leite, M.F., Burgstahler, A.D. & Nathanson, M.H. Ca2+ waves require sequential activation of inositol 1,4,5-trisphosphate receptors and ryanodine receptors in pancreatic acinar cells. Gastroenterology 122, 415–427 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Deisseroth, K., Heist, E.K. & Tsien, R.W. Translocation of calmodulin to the nucleus supports CREB phosphorylation in hippocampal neurons. Nature 392, 198–202 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Carrion, A.M., Link, W.A., Ledo, F., Mellstrom, B. & Naranjo, J.R. DREAM is a Ca2+-regulated transcriptional repressor. Nature 398, 80–84 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Dobi, A. & Agoston, D.V. Submillimolar levels of calcium regulates DNA structure at the dinucleotide repeat (TG/AC)n . Proc. Natl Acad. Sci. USA 95, 5981–5986 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gerasimenko, O.V., Gerasimenko, J.V., Tepikin, A.V. & Petersen, O.H. ATP-dependent accumulation and inositol trisphosphate- or cyclic ADP-ribose-mediated release of Ca2+ from the nuclear envelope. Cell 80, 439–444 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Phair, R.D. & Misteli, T. High mobility of proteins in the mammalian cell nucleus. Nature 404, 604–609 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Wojcikiewicz, R.J.H. Type I, II, and III inositol 1,4,5-trisphosphate receptors are unequally susceptible to down-regulation and are expressed in markedly different proportions in different cell types. J. Biol. Chem. 270, 11678–11683 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Xu, C., Zipfel, W., Shear, J.B., Williams, R.M. & Webb, W.W. Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy. Proc. Natl Acad. Sci. USA 93, 10763–10768 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Allbritton, N.L., Meyer, T. & Stryer, L. Range of messenger action of calcium ion and inositol 1, 4,5-trisphosphate. Science 258, 1812–1815 (1992).

    Article  CAS  PubMed  Google Scholar 

  39. Meyer, T. & Stryer, L. Molecular model for receptor-stimulated calcium spiking. Proc. Natl Acad. Sci. USA 85, 5051–5055 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ramos-Franco, J., Fill, M. & Mignery, G.A. Isoform-specific function of single inositol 1,4,5-trisphosphate receptor channels. Biophys. J. 75, 834–839 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank B. Ehrlich for comments on the manuscript; T. Meyer for the GFP–PKC-γ construct and R. Wojcikiewicz for providing antibodies against the type II InsP3 receptor. This work was supported by an AASLD–Schering Advanced Hepatology Fellowship Award, a Glaxo Institute for Digestive Health Basic Science Research Award and a Yale Child Health Research Center Award (to W.E.); a grant from Conselho Nacional de Desenvolvimento Científico e Tecnológico (to M.F.L.); and NIH grants (to W.R.Z. and M.H.N).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael H. Nathanson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

Figure S1. Limitations of conventional widefield UV excitation to examine the nucleoplasmic reticulum. (PDF 244 kb)

Figure S2. Visualization of the nucleoplasmic reticulum with mag-fluo-4.

Figure S3. Demonstration of the purity of the cytosolic and nuclear fractions.

Figure S4. A method for efficient localized photolysis of NPE-InsP3 using two photon excitation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Echevarría, W., Leite, M., Guerra, M. et al. Regulation of calcium signals in the nucleus by a nucleoplasmic reticulum. Nat Cell Biol 5, 440–446 (2003). https://doi.org/10.1038/ncb980

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb980

  • Springer Nature Limited

This article is cited by

Navigation