Skip to main content
Log in

MOR1/GEM1 has an essential role in the plant-specific cytokinetic phragmoplast

  • Brief Communication
  • Published:

From Nature Cell Biology

View current issue Submit your manuscript

Abstract

MOR1 is a member of the MAP215 family of microtubule-associated proteins and is required to establish interphase arrays of cortical microtubules in plant cells1. Here we show that MOR1 binds microtubules in vivo, localizing to both cortical microtubules and to areas of overlapping microtubules in the phragmoplast. Genetic complementation of the cytokinesis-defective gemini pollen 1-1 (gem1-1) mutation with MOR1 shows that MOR1 (which is synonymous with the protein GEM1) is essential in cytokinesis. Phenotypic analysis of gem1-1 and gem1-2, which contains a T-DNA insertion, confirm that MOR1/GEM1 is essential for regular patterns of cytokinesis. Both the gem1-1 and gem1-2 mutations cause the truncation of the MOR1/GEM1 protein. In addition, the carboxy-terminal domain of the protein, which is absent in both mutants, binds microtubules in vitro. Our data show that MOR1/GEM1 has an essential role in the cytokinetic phragmoplast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: MOR1 associates with microtubules and oryzalin-induced tubulin aggregates.
Figure 2: gem1-2 shows a defective cytokinesis phenotype.
Figure 3: Gene and protein structure of MOR1/GEM1.
Figure 4: The C terminus of MOR1/GEM1 binds to porcine brain microtubules.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Data deposits

  • The wild-type genomic sequence of MOR1/GEM1 is deposited in GenBank under accession number AY124770.

References

  1. Whittington, A. T. et. al. Nature 411, 610–613 (2000).

    Article  Google Scholar 

  2. Smertenko, A. et. al. Nature Cell Biol. 2, 750–753 (2000).

    Article  CAS  Google Scholar 

  3. Igarashi, H. et. al. Plant Cell Physiol. 41, 920–931 (2000).

    Article  CAS  Google Scholar 

  4. Hussey, P. J., Hawkins, T. J., Igarashi, H., Kaloriti, D. & Smertenko, A. Plant Mol. Biol. (in the press).

  5. Hussey, P. J. & Hawkins, T. J. Trends Plant Sci. 6, 389–392 (2001).

    Article  CAS  Google Scholar 

  6. Charrasse, S. et. al. J. Cell Sci. 111, 1371–1383 (1998).

    CAS  PubMed  Google Scholar 

  7. Graef, R., Daunderer, C. & Schliwa, M. J. Cell Sci. 113, 1747–1758 (2000).

    Google Scholar 

  8. Cullen, C. F., Deah, P., Glover, D. M. & Ohkura, H. et. al. J. Cell Biol. 146, 1005–1018 (1999).

    Article  CAS  Google Scholar 

  9. Hirsh, D. & Vanderslice, R. Dev. Biol. 49, 220–235 (1979).

    Article  Google Scholar 

  10. Ohkura, H. et. al. EMBO J. 7, 1465–1473 (1988).

    Article  CAS  Google Scholar 

  11. Garcia M. A., Vardy, L., Koonrugsa, N. & Toda, T. EMBO J. 20, 3389–3401 (2001).

    Article  CAS  Google Scholar 

  12. Wang P. J., and Huffaker, T. C. J. Cell. Biol. 139, 1271–1280 (1997).

    Article  CAS  Google Scholar 

  13. Tournebize, R. et. al. Nature Cell Biol. 2, 13–19 (2000).

    Article  CAS  Google Scholar 

  14. Neuwald, A. F. & Hirano, T. Genome Res. 10, 1445–1452 (2000).

    Article  CAS  Google Scholar 

  15. Twell, D., Park, S. K. & Lalanne, E. Trends Plant Sci. 3, 305–310 (1998).

    Article  Google Scholar 

  16. Park, S. K., Howden, R. & Twell, D. Development 125, 3789–3799 (1998).

    CAS  PubMed  Google Scholar 

  17. Park, S. K. & Twell, D. Plant Physiol. 126, 899–909 (2001).

    Article  CAS  Google Scholar 

  18. Popov, A. V. et. al. EMBO J. 20, 397–410 (2001).

    Article  CAS  Google Scholar 

  19. Asada, T., Sonobe, S. & Shibaoka, H. Nature 350, 238–241 (1991).

    Article  CAS  Google Scholar 

  20. Gard D. L. & Kirschner, M. W. J. Cell Biol. 105, 2203–2215 (1987).

    Article  CAS  Google Scholar 

  21. Vasquez, R. J., Gard, D. L. & Cassimeris, L. J. Cell Biol. 127, 985–993 (1994).

    Article  CAS  Google Scholar 

  22. Tournebize, R. et. al. Nature Cell Biol. 2, 13–19 (2000).

    Article  CAS  Google Scholar 

  23. Smertenko, A. P., Lawrence, S. L. & Hussey, P. J. Protoplasma. 203, 138–143 (1998).

    Article  CAS  Google Scholar 

  24. Shelanski M. L., Gaskin, F. & Cantor, C. R. Proc. Natl Acad. Sci. USA 70, 765–768 (1973).

    Article  CAS  Google Scholar 

  25. Clough, S. J. & Bent, A. F. Plant J. 16, 735–743 (1998).

    Article  CAS  Google Scholar 

  26. Goddijn, O. J. M. et. al. Plant J. 4, 863–873 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Wasteneys for the MOR1 sequencing primers. This work was funded by the Biotechnology and Biological Sciences Research Council UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Twell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary figures

Figure S1 (PDF 678 kb)

Figure S2

Figure S3

Figure S4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Twell, D., Park, S., Hawkins, T. et al. MOR1/GEM1 has an essential role in the plant-specific cytokinetic phragmoplast. Nat Cell Biol 4, 711–714 (2002). https://doi.org/10.1038/ncb844

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb844

  • Springer Nature Limited

This article is cited by

Navigation