Skip to main content
Log in

Rethinking glutamine addiction

  • News & Views
  • Published:

From Nature Cell Biology

View current issue Submit your manuscript

Tumours reprogram their metabolism to maximize macromolecule biosynthesis for growth. However, which of the common tumour-associated metabolic activities are critical for proliferation remains unclear. Glutamate-derived glutamine is now shown to satisfy the glutamine needs of glioblastoma, indicating that glutamine anaplerosis is dispensable for growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Glioblastoma proliferation under glutamine deprivation depends on glutamate-derived glutamine synthesis through glutamine synthetase.
Figure 2: Glutamine synthetase activity within the tumour microenvironment fulfils glioblastoma glutamine requirements.

References

  1. Ye, J. et al. EMBO J. 29, 2082–2096 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mashimo, T. et al. Cell 159, 1603–1614 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wise, D. R. et al. Proc. Natl Acad. Sci. USA 105, 18782–18787 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Cheng, T. et al. Proc. Natl Acad. Sci. USA 108, 8674–8679 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Wang, J. B. et al. Cancer Cell 18, 207–219 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tardito, S. et al. Nat. Cell Biol. 17, 1556–1568 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kung, H. N., Marks, J. R. & Chi, J. T. PLoS Genet. 7, e1002229 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Carey, B. W., Finley, L. W., Cross, J. R., Allis, C. D. & Thompson, C. B. Nature 518, 413–416 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Gamberino, W. C., Berkich, D. A., Lynch, C. J., Xu, B. & LaNoue, K. F. J. Neurochem. 69, 2312–2325 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, J. et al. Mol. Cell 56, 205–218 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gross, M. I. et al. Mol. Cancer Ther. 13, 890–901 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Cardaci, S. et al. Nat Cell Biol. 17, 1317–1326 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Birsoy, K. et al. Cell 162, 540–551 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sullivan, L. B. et al. Cell 162, 552–563 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ben-Sahra, I., Howell, J. J., Asara, J. M. & Manning, B. D. Science 339, 1323–1328 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather R. Christofk.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krall, A., Christofk, H. Rethinking glutamine addiction. Nat Cell Biol 17, 1515–1517 (2015). https://doi.org/10.1038/ncb3278

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb3278

  • Springer Nature Limited

This article is cited by

Navigation