Skip to main content
Log in

Targeted ubiquitination of CDT1 by the DDB1–CUL4A–ROC1 ligase in response to DNA damage

  • Letter
  • Published:

From Nature Cell Biology

View current issue Submit your manuscript

Abstract

Cullins assemble a potentially large number of ubiquitin ligases by binding to the RING protein ROC1 to catalyse polyubiquitination, as well as binding to various specificity factors to recruit substrates1,2,3,4. The Cul4A gene is amplified in human breast and liver cancers, and loss-of-function of Cul4 results in the accumulation of the replication licensing factor CDT1 in Caenorhabditis elegans embryos and ultraviolet (UV)-irradiated human cells. Here, we report that human UV-damaged DNA-binding protein DDB1 associates stoichiometrically with CUL4A in vivo, and binds to an amino-terminal region in CUL4A in a manner analogous to SKP1, SOCS and BTB binding to CUL1, CUL2 and CUL3, respectively. As with SKP1–CUL1, the DDB1–CUL4A association is negatively regulated by the cullin-associated and neddylation-dissociated protein, CAND1. Recombinant DDB1 and CDT1 bind directly to each other in vitro, and ectopically expressed DDB1 bridges CDT1 to CUL4A in vivo. Silencing DDB1 prevented UV-induced rapid CDT1 degradation in vivo and CUL4A-mediated CDT1 ubiquitination in vitro. We suggest that DDB1 targets CDT1 for ubiquitination by a CUL4A-dependent ubiquitin ligase, CDL4ADDB1, in response to UV irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: DDB1 binds to an N-terminal region in CUL4A.
Figure 2: DDB1 and CAND1 bind to CUL4A in a mutually exclusive manner.
Figure 3: DDB1 binds to CDT1 and bridges CDT1 to CUL4A.
Figure 4: DDB1 targets CDT1 for CUL4A-mediated ubiquitination.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  Google Scholar 

  2. Deshaies, R.J. SCF and cullin/RING H2-based ubiquitin ligases. Annu. Rev. Cell Dev. Biol. 15, 435–467 (1999).

    Article  CAS  Google Scholar 

  3. Jackson, P. et al. The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol. 10, 429–439 (2000).

    Article  CAS  Google Scholar 

  4. Furukawa, M., Ohta, T. & Xiong, Y. Activation of UBC5 ubiquitin-conjugating enzyme by the RING finger of ROC1 and assembly of active ubiquitin ligases by all cullins. J. Biol. Chem. 277, 15758–15765 (2002).

    Article  CAS  Google Scholar 

  5. Bai, C. et al. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86, 263–274 (1996).

    Article  CAS  Google Scholar 

  6. Skowyra, D., Craig, K., Tyers, M., Elledge, S.J. & Harper, J.W. F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91, 209–219 (1997).

    Article  CAS  Google Scholar 

  7. Feldman, R.M.R., Correll, C.C., Kaplan, K.B. & Deshaies, R.J. A complex of Cdc4p, Skp1p, and Cdc53p/Cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 91, 221–230 (1997).

    Article  CAS  Google Scholar 

  8. Zheng, N. et al. Structure of the Cul1–Rbx1–Skp1–F-box–Skp2 SCF ubiquitin ligase complex. Nature 416, 703–709 (2002).

    Article  CAS  Google Scholar 

  9. Kamura, T. et al. The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes Dev. 12, 3872–3881 (1998).

    Article  CAS  Google Scholar 

  10. Zhang, J.G. et al. The conserved SOCS box motif in suppressors of cytokine signaling binds to elongins B and C and may couple bound proteins to proteasomal degradation. Proc. Natl Acad. Sci. USA 96, 2071–2076 (1999).

    Article  CAS  Google Scholar 

  11. Kamura, T. et al. Muf1, a novel Elongin BC-interacting leucine-rich repeat protein that can assemble with Cul5 and Rbx1 to reconstitute a ubiquitin ligase. J. Biol. Chem. 276, 29748–29753 (2001).

    Article  CAS  Google Scholar 

  12. Stebbins, C.E., Kaelin, W.G., Jr. & Pavletich, N.P. Structure of the VHL–ElonginC–ElonginB complex: implications for VHL tumor suppressor function. Science 284, 455–461 (1999).

    Article  CAS  Google Scholar 

  13. Furukawa, M., He, Y.J., Borchers, C. & Xiong, Y. Targeting of protein ubiquitination by BTB–Cullin 3–Roc1 ubiquitin ligases. Nature Cell Biol. 5, 1001–1007 (2003).

    Article  CAS  Google Scholar 

  14. Geyer, R., Wee, S., Anderson, S., Yates, J. & Wolf, D.A. BTB/POZ domain proteins are putative substrate adaptors for cullin 3 ubiquitin ligases. Mol. Cell 12, 783–790 (2003).

    Article  CAS  Google Scholar 

  15. Pintard, L. et al. The BTB protein MEL-26 is a substrate-specific adaptor of the CUL-3 ubiquitin-ligase. Nature 425, 311–316 (2003).

    Article  CAS  Google Scholar 

  16. Xu, L. et al. BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3. Nature 425, 316–321 (2003).

    Article  CAS  Google Scholar 

  17. Osaka, F. et al. Covalent modifier NEDD8 is essential for SCF ubiquitin-ligase in fission yeast. EMBO J. 19, 3475–3484 (2000).

    Article  CAS  Google Scholar 

  18. Zhong, W., Feng, H., Santiago, F.E. & Kipreos, E.T. CUL-4 ubiquitin ligase maintains genome stability by restraining DNA-replication licensing. Nature 423, 885–889 (2003).

    Article  CAS  Google Scholar 

  19. Li, B., Ruiz, J.C. & Chun, K.T. CUL-4A is critical for early embryonic development. Mol. Cell. Biol. 22, 4997–5005 (2002).

    Article  CAS  Google Scholar 

  20. Chen, L.-C. et al. The human homologue for the Caenorhabditis elegans cul-4 gene is amplified and overexpressed in primary breast cancers. Cancer Res. 58, 3677–3683 (1998).

    CAS  PubMed  Google Scholar 

  21. Yasui, K. et al. TFDP1, CUL4A, and CDC16 identified as targets for amplification at 13q34 in hepatocellular carcinomas. Hepatology 35, 1476–1484 (2002).

    Article  CAS  Google Scholar 

  22. Higa, L.A., Mihaylov, I.S., Banks, D.P., Zheng, J. & Zhang, H. Radiation-mediated proteolysis of CDT1 by CUL4–ROC1 and CSN complexes constitutes a new checkpoint. Nature Cell Biol. 5, 1008–1015 (2003).

    Article  CAS  Google Scholar 

  23. Zhang, Y. et al. CUL-4A stimulates ubiquitylation and degradation of the HOXA9 homeodomain protein. EMBO J. 22, 6057–6067 (2003).

    Article  CAS  Google Scholar 

  24. Andrejeva, J., Poole, E., Young, D.F., Goodbourn, S. & Randall, R.E. The p127 subunit (DDB1) of the UV-DNA damage repair binding protein is essential for the targeted degradation of STAT1 by the V protein of the paramyxovirus simian virus 5. J. Virol. 76, 11379–11386 (2002).

    Article  CAS  Google Scholar 

  25. Ulane, C.M. & Horvath, C.M. Paramyxoviruses SV5 and HPIV2 assemble STAT protein ubiquitin ligase complexes from cellular components. Virology 304, 160–166 (2002).

    Article  CAS  Google Scholar 

  26. Ulane, C.M., Rodriguez, J.J., Parisien, J.P. & Horvath, C.M. STAT3 ubiquitylation and degradation by mumps virus suppress cytokine and oncogene signaling. J. Virol. 77, 6385–6393 (2003).

    Article  CAS  Google Scholar 

  27. Wertz, I.E. et al. Human De-etiolated-1 regulates c-Jun by assembling a CUL4A ubiquitin ligase. Science 303, 1371–1374 (2004).

    Article  CAS  Google Scholar 

  28. Shiyanov, P., Nag, A. & Raychaudhuri, P. Cullin 4A associates with the UV-damaged DNA-binding protein DDB. J. Biol. Chem. 274, 35309–35312 (1999).

    Article  CAS  Google Scholar 

  29. Liu, J., Furukawa, M., Matsumoto, T. & Xiong, Y. NEDD8 modification of CUL1 dissociates p120(CAND1), an inhibitor of CUL1–SKP1 binding and SCF ligases. Mol. Cell 10, 1511–1518 (2002).

    Article  CAS  Google Scholar 

  30. Zheng, J. et al. CAND1 binds to unneddylated CUL1 and regulates the formation of SCF ubiquitin E3 ligase complex. Mol. Cell 10, 1519–1526 (2002).

    Article  CAS  Google Scholar 

  31. Li, X., Zhao, Q., Liao, R., Sun, P. & Wu, X. The SCF(Skp2) ubiquitin ligase complex interacts with the human replication licensing factor Cdt1 and regulates Cdt1 degradation. J. Biol. Chem. 278, 30854–30858 (2003).

    Article  CAS  Google Scholar 

  32. Keeney, S., Chang, G.J. & Linn, S. Characterization of a human DNA damage binding protein implicated in xeroderma pigmentosum. J. Biol. Chem. 268, 21293–21300 (1993).

    CAS  PubMed  Google Scholar 

  33. Groisman, R. et al. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell 113, 357–367 (2003).

    Article  CAS  Google Scholar 

  34. Nag, A., Bondar, T., Shiv, S. & Raychaudhuri, P. The xeroderma pigmentosum group E gene product DDB2 is a specific target of cullin 4A in mammalian cells. Mol. Cell Biol. 21, 6738–6747 (2001).

    Article  CAS  Google Scholar 

  35. Chu, G. & Chang, E. Xeroderma pigmentosum group E cells lack a nuclear factor that binds to damaged DNA. Science 242, 564–567 (1988).

    Article  CAS  Google Scholar 

  36. Lin, G.Y., Paterson, R.G., Richardson, C.D. & Lamb, R.A. The V protein of the paramyxovirus SV5 interacts with damage-specific DNA binding protein. Virology 249, 189–200 (1998).

    Article  CAS  Google Scholar 

  37. Ohta, T., Michel, J.J., Schottelius, A.J. & Xiong, Y. ROC1, a homolog of APC11, represents a family of cullin partners with an associated ubiquitin ligase activity. Mol. Cell 3, 535–541 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Raychaudhuri for providing the DDB1 expression vector; X. Wu for providing a CDT1 expression vector and a GST–CDT1 antibody; N. Zheng for providing purified DDB1 protein; S. Jackson for generating the CUL4A antibody; and M. Furukawa and members of the Xiong laboratory for the discussion and help throughout the course of this study. C.M.M. is a recipient of the George H. Hitchings New Investigator Award in Health Research and Training of the Triangle Community Foundation. This work is supported by National Institutes of Health grant GM067113 to Y.X.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Xiong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, J., McCall, C., Ohta, T. et al. Targeted ubiquitination of CDT1 by the DDB1–CUL4A–ROC1 ligase in response to DNA damage. Nat Cell Biol 6, 1003–1009 (2004). https://doi.org/10.1038/ncb1172

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1172

  • Springer Nature Limited

This article is cited by

Navigation