Skip to main content
Log in

Monitoring post-translational modification of proteins with allosteric ribozymes

  • Article
  • Published:

From Nature Biotechnology

View current issue Submit your manuscript

Abstract

An allosteric hammerhead ribozyme activated specifically by the unphosphorylated form of the protein kinase ERK2 was created through a rational design strategy that relies on molecular recognition of ERK2 to decrease the formation of an alternate, inactive ribozyme conformer. Neither closely related mitogen-activated protein kinases (MAPKs) nor the phosphorylated form of ERK2 induced ribozyme activity. The ribozyme quantitatively detected ERK2 added to mammalian cell lysates and also functioned quantitatively in a multiplexed solution-phase assay. This same strategy was used to construct a second ribozyme selectively activated by the phosphorylated (active) form of ERK2. This approach is generally applicable to the development of ribozymes capable of monitoring post-translational modification of specific proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: A ribozyme activated by a protein kinase.
Figure 2: ERK2-concentration dependence of ERK-HH activation.
Figure 3: Specificity of ribozyme activation.
Figure 4: Detection of ERK2 in mammalian cell lysates.
Figure 5: A solution-phase assay.
Figure 6: A ribozyme responsive to phosphorylated ERK2.

Similar content being viewed by others

References

  1. Peracchi, A., Beigelman, L., Usman, N. & Herschlag, D. Rescue of abasic hammerhead ribozymes by exogenous addition of specific bases. Proc. Natl. Acad. Sci. USA 93, 11522–11527 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tang, J. & Breaker, R.R. Rational design of allosteric ribozymes. Chem. Biol. 4, 453–459 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Koizumi, M., Soukup, G.A., Kerr, J.N. & Breaker, R.R. Allosteric selection of ribozymes that respond to the second messengers cGMP and cAMP. Nat. Struct. Biol. 6, 1062–1071 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Robertson, M.P. & Ellington, A.D. Design and optimization of effector-activated ribozyme ligases. Nucleic Acids Res. 28, 1751–1759 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Soukup, G.A. & Breaker, R.R. Engineering precision RNA molecular switches. Proc. Natl. Acad. Sci. USA 96, 3584–3589 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Robertson, M.P. & Ellington, A.D. In vitro selection of nucleoprotein enzymes. Nat. Biotechnol. 19, 650–655 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Cox, J.C. & Ellington, A.D. Automated selection of anti-protein aptamers. Bioorg. Med. Chem. 9, 2525–2531 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Haab, B.B., Dunham, M.J. & Brown, P.O. Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol. 2, 0004.1–0004.13 (2001).

    Article  Google Scholar 

  9. Seetharaman, S., Zivarts, M., Sudarsan, N. & Breaker, R.R. Immobilized RNA switches for the analysis of complex chemical and biological mixtures. Nat. Biotechnol. 19, 336–341 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Ahn, N.G. & Resing, K.A. Toward the phosphoproteome. Nat. Biotechnol. 19, 317–318 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Service, R.F. Proteomics: high-speed biologists search for gold in proteins. Science 294, 2074–2077 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Lewis, T.S., Shapiro, P.S. & Ahn, N.G. Signal transduction through MAP kinase cascades. Adv. Cancer Res. 74, 49–139 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Hanahan, D. & Weinberg, R.A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Lewis, A.J. & Manning, A.M. New targets for anti-inflammatory drugs. Curr. Opin. Chem. Biol. 3, 489–494 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Hertel, K.J., Herschlag, D. & Uhlenbeck, O.C. A kinetic and thermodynamic framework for the hammerhead ribozyme reaction. Biochemistry 33, 3374–3385 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Thomson, J.B., Tuschl, T. & Eckstein, F. Activity of hammerhead ribozymes containing non-nucleotidic linkers. Nucleic Acids Res. 21, 5600–5603 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Murray, J.B. et al. The structural basis of hammerhead ribozyme self-cleavage. Cell 92, 665–673 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Stage-Zimmermann, T.K. & Uhlenbeck, O.C. Hammerhead ribozyme kinetics. RNA 4, 875–889 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Soukup, G.A., DeRose, E.C., Koizumi, M. & Breaker, R.R. Generating new ligand-binding RNAs by affinity maturation and disintegration of allosteric ribozymes. RNA 7, 524–536 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Golden, M.C., Collins, B.D., Willis, M.C. & Koch, T.H. Diagnostic potential of PhotoSELEX-evolved ssDNA aptamers. J. Biotechnol. 81, 167–178 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Seiwert, S.D., Stines, N.T., Aigner, S., Ahn, N.G. & Uhlenbeck, O.C. RNA aptamers as pathway-specific MAP kinase inhibitors. Chem. Biol. 7, 833–843 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Kültz, D. Phylogenetic and functional classification of mitogen- and stress-activated protein kinases. J. Mol. Evol. 46, 0571–0588 (1998).

    Article  Google Scholar 

  23. Gold, L., Polisky, B., Uhlenbeck, O. & Yarus, M. Diversity of oligonucleotide functions. Annu. Rev. Biochem. 64, 763–797 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Johnson, L.N., Noble, M.E. & Owen, D.J. Active and inactive protein kinases: structural basis for regulation. Cell 85, 149–158 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Canagarajah, B.J., Khokhlatchev, A., Cobb, M.H. & Goldsmith, E.J. Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Cell 90, 859–869 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Herschlag, D. RNA chaperones and the RNA folding problem. J. Biol. Chem. 270, 20871–20874 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Ekland, E.H. & Bartel, D.P. The secondary structure and sequence optimization of an RNA ligase ribozyme. Nucleic Acids Res. 23, 3231–3238 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Beaudry, A., DeFoe, J., Zinnen, S., Burgin, A. & Beigelman, L. In vitro selection of a novel nuclease-resistant RNA phosphodiesterase. Chem. Biol. 7, 323–334 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Zinnen, S.P. et al. Selection, design, and characterization of a new potential therapeutic ribozyme. RNA 8, 1–8 (2002).

    Article  Google Scholar 

  30. Dai, X., De Mesmaeker, A. & Joyce, G.F. Cleavage of an amide bond by a ribozyme. Science 267, 237–240 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Curtis, E.A. & Bartel, D.P. The hammerhead cleavage reaction in monovalent cations. RNA 7, 546–552 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Porta, H. & Lizardi, P.M. An allosteric hammerhead ribozyme. Biotechnology (NY) 13, 161–164 (1995).

    CAS  Google Scholar 

  33. Bartel, D.P. & Szostak, J.W. Isolation of new ribozymes from a large pool of random sequences. Science 261, 1411–1418 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Ares, M.J. & Weiser, B. Rearrangement of snRNA structure during assembly and function of the spliceosome. Prog. Nucleic Acid Res. Mol. Biol. 50 131–159 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Valcarcel, J., Gaur, R.K., Singh, R. & Green, M.R. Interaction of U2AF65 RS region with pre-mRNA branch point and promotion of base pairing with U2 snRNA. Science 273, 1706–1709 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Merryman, C., Moazed, D., Daubresse, G. & Noller, H.F. Nucleotides in 23S rRNA protected by the association of 30S and 50S ribosomal subunits. J. Mol. Biol. 285, 107–113 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Pape, T., Wintermeyer, W. & Rodnina, M.V. Conformational switch in the decoding region of 16S rRNA during aminoacyl-tRNA selection on the ribosome. Nat. Struct. Biol. 7, 104–107 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Mansour, S.J., Candia, J.M., Gloor, K.K. & Ahn, N.G. Constitutively active mitogen-activated protein kinase kinase 1 (MAPKK1) and MAPKK2 mediate similar transcriptional and morphological responses. Cell Growth Differ. 7, 243–250 (1996).

    CAS  PubMed  Google Scholar 

  39. Robbins, D.J. et al. Regulation and properties of extracellular signal-regulated protein kinases 1 and 2 in vitro. J. Biol. Chem. 268, 5097–5106 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. Shapiro, P.S. et al. Activation of the MKK/ERK pathway during somatic cell mitosis: direct interactions of active ERK with kinetochores and regulation of the mitotic 3F3/2 phosphoantigen. J. Cell. Biol. 142, 1533–1545 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Khokhlatchev, A. et al. Reconstitution of mitogen-activated protein kinase phosphorylation cascades in bacteria. Efficient synthesis of active protein kinases. J. Biol. Chem. 272, 11057–11062 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Posada, J., Sanghera, J., Pelech, S., Aebersold, R. & Cooper, J.A. Tyrosine phosphorylation and activation of homologous protein kinases during oocyte maturation and mitogenic activation of fibroblasts. Mol. Cell. Biol. 11, 2517–2528 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Leonid Beigelman, James McSwiggen, Pamela Pavco, Nassim Usman, Shawn Zinnen, and others at Ribozyme Pharmaceuticals for helpful discussion, Olke Uhlenbeck (University of Colorado), Ronald Breaker (Yale University), and Scott Silverman (University of Illinois at Urbana-Champaign) for comments on the manuscript, and Terry Violette and Jeffery Hoehl for assistance in preparing graphics.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Narendra K. Vaish or Scott D. Seiwert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaish, N., Dong, F., Andrews, L. et al. Monitoring post-translational modification of proteins with allosteric ribozymes. Nat Biotechnol 20, 810–815 (2002). https://doi.org/10.1038/nbt719

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt719

  • Springer Nature America, Inc.

This article is cited by

Navigation