Skip to main content
Log in

A simple selection strategy for evolving highly efficient enzymes

  • Brief Communication
  • Published:

From Nature Biotechnology

View current issue Submit your manuscript

Abstract

Combining tunable transcription with an enzyme-degradation tag affords an effective means to reduce intracellular enzyme concentrations from high to very low levels. Such fine-tuned control allows selection pressure to be systematically increased in directed-evolution experiments. This facilitates identification of mutants with wild-type activity, as shown here for an engineered chorismate mutase. Numerous selection formats and cell-based screening methodologies may benefit from the large dynamic range afforded by this easily implemented strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Selection plasmid design.
Figure 2: Tetracycline-dependent growth in selective M9c medium and influence of tetracycline concentration on the selection process.

Similar content being viewed by others

References

  1. Taylor, S.V., Kast, P. & Hilvert, D. Angew. Chem. Int. Ed. Engl. 40, 3310–3335 (2001).

    Article  Google Scholar 

  2. MacBeath, G., Kast, P. & Hilvert, D. Protein Sci. 7, 325–335 (1998).

    Article  CAS  Google Scholar 

  3. Kast, P., Asif-Ullah, M., Jiang, N. & Hilvert, D. Proc. Natl. Acad. Sci. USA 93, 5043–5048 (1996).

    Article  CAS  Google Scholar 

  4. Vamvaca, K., Butz, M., Walter, K.U., Taylor, S.V. & Hilvert, D. Protein Sci. 14, 2103–2114 (2005).

    Article  CAS  Google Scholar 

  5. Yano, T., Oue, S. & Kagamiyama, H. Proc. Natl. Acad. Sci. USA 95, 5511–5515 (1998).

    Article  CAS  Google Scholar 

  6. Khlebnikov, A., Risa, O., Skaug, T., Carrier, T.A. & Keasling, J.D. J. Bacteriol. 182, 7029–7034 (2000).

    Article  CAS  Google Scholar 

  7. Hansen, L.H., Ferrari, B., Sorensen, A.H., Veal, D. & Sorensen, S.J. Appl. Environ. Microbiol. 67, 239–244 (2001).

    Article  CAS  Google Scholar 

  8. Lutz, R. & Bujard, H. Nucleic Acids Res. 25, 1203–1210 (1997).

    Article  CAS  Google Scholar 

  9. Karzai, A.W., Roche, E.D. & Sauer, R.T. Nat. Struct. Biol. 7, 449–455 (2000).

    Article  CAS  Google Scholar 

  10. Burton, S.G., Cowan, D.A. & Woodley, J.M. Nat. Biotechnol. 20, 37–45 (2002).

    Article  CAS  Google Scholar 

  11. Turner, N.J. in Enzyme Assays (ed. J.L. Reymond) 139–161, (Wiley-VCH, Weinheim, 2006).

    Google Scholar 

  12. Jestin, J.L. & Kaminski, P.A. J. Biotechnol. 113, 85–103 (2004).

    Article  CAS  Google Scholar 

  13. Hillen, W. & Berens, C. Annu. Rev. Microbiol. 48, 345–369 (1994).

    Article  CAS  Google Scholar 

  14. Gamper, M., Hilvert, D. & Kast, P. Biochemistry 39, 14087–14094 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was generously supported by the Schweizerischer Nationalfonds and the ETH Zurich.

Author information

Authors and Affiliations

Authors

Contributions

M.N., P.K. and D.H. designed research; M.N., M.B. and C.H. performed the experiments; M.N., M.B., P.K. and D.H. analyzed data; M.N., P.K. and D.H. wrote the paper.

Corresponding author

Correspondence to Donald Hilvert.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–4; Supplementary Table 1; Supplementary Methods (PDF 226 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neuenschwander, M., Butz, M., Heintz, C. et al. A simple selection strategy for evolving highly efficient enzymes. Nat Biotechnol 25, 1145–1147 (2007). https://doi.org/10.1038/nbt1341

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1341

  • Springer Nature America, Inc.

This article is cited by

Navigation