Skip to main content
Log in

Group II introns as controllable gene targeting vectors for genetic manipulation of bacteria

  • Article
  • Published:

From Nature Biotechnology

View current issue Submit your manuscript

Abstract

Mobile group II introns can be retargeted to insert into virtually any desired DNA target. Here we show that retargeted group II introns can be used for highly specific chromosomal gene disruption in Escherichia coli and other bacteria at frequencies of 0.1–22%. Furthermore, the introns can be used to introduce targeted chromosomal breaks, which can be repaired by transformation with a homologous DNA fragment, enabling the introduction of point mutations. Because of their wide host range, mobile group II introns should be useful for genetic engineering and functional genomics in a wide variety of bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Lambowitz, A.M., Caprara, M.G., Zimmerly, S. & Perlman, P.S. Group I and group II ribozymes as RNPs: clues to the past and guides to the future. In The RNA world, Edn. 2. (eds Gesteland, R.F., Cech, T.R. & Atkins, J.F.) 451–484 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; 1999).

  • Belfort, M., Derbyshire, V., Parker, M.M., Cousineau, B. & Lambowitz, A.M. Mobile introns: pathways and proteins. In Mobile DNA, Edn. 2. (eds Craig, N., Craigie, R., Gellert, M. & Lambowitz, A.M.) (ASM Press, Washington DC; 2002), in press.

  • Eskes, R., Yang, J., Lambowitz, A.M. & Perlman, P.S. Mobility of yeast mitochondrial group II introns: engineering a new site specificity and retrohoming via full reverse splicing. Cell 88, 865–874 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Cousineau, B. et al. Retrohoming of a bacterial group II intron: mobility via complete reverse splicing, independent of homologous DNA recombination. Cell 94, 451–462 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Eskes, R. et al. Multiple homing pathways used by yeast mitochondrial group II introns. Mol. Cell. Biol. 20, 8432–8446 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cousineau, B., Lawrence, S., Smith, D. & Belfort, M. Retrotransposition of a bacterial group II intron. Nature 404, 1018–1021 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Saldanha, R. et al. RNA and protein catalysis in group II intron splicing and mobility reactions using purified components. Biochemistry 38, 9069–9083 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Guo, H. et al. Group II introns designed to insert into therapeutically relevant DNA target sites in human cells. Science 289, 452–457 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Guo, H., Zimmerly, S., Perlman, P.S. & Lambowitz, A.M. Group II intron endonucleases use both RNA and protein subunits for recognition of specific sequences in double-stranded DNA. EMBO J. 16, 6835–6848 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohr, G., Smith, D., Belfort, M. & Lambowitz, A.M. Rules for DNA target-site recognition by a lactococcal group II intron enable retargeting of the intron to specific DNA sequences. Genes Dev. 14, 559–573 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, N.N. & Lambowitz, A.M. Interaction of a group II intron ribonucleoprotein endonuclease with its DNA target site investigated by DNA footprinting and modification interference. J. Mol. Biol. 309, 361–386 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Belfort, M. & Pedersen-Lane, J. Genetic system for analyzing Escherichia coli thymidylate synthase. J. Bacteriol. 160, 371–378 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davanloo, P., Rosenberg, A.H., Dunn, J.J. & Studier, F.W. Cloning and expression of the gene for bacteriophage T7 RNA polymerase. Proc. Natl. Acad. Sci. USA 81, 2035–2039 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jasin, M. Genetic manipulation of genomes with rare-cutting endonucleases. Trends Genet. 12, 224–228 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Puchta, H., Dujon, B. & Hohn, B. Two different but related mechanisms are used in plants for repair of genomic double-strand breaks by homologous recombination. Proc. Natl. Acad. Sci. USA 93, 5055–5060 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donoho, G., Jasin, M. & Berg, P. Analysis of gene targeting and intrachromosomal homologous recombination stimulated by genomic double-strand breaks in mouse embryonic stem cells. Mol. Cell. Biol. 18, 4070–4078 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Posfai, G., Kolisnychenko, V., Bereczki, Z. & Blattner, F.R. Markerless gene replacement in Escherichia coli stimulated by a double-strand break in the chromosome. Nucleic Acids Res. 27, 4409–4415 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy, K.C. Use of bacteriophage λ recombination functions to promote gene replacement in Escherichia coli. J. Bacteriol. 180, 2063–2071 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., Buchholz, F., Muyrers, J.P.P. & Stewart, F.A. A new logic for DNA engineering using recombination in Escherichia coli. Nat. Genet. 20, 123–128 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Datsenko, K.A. & Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640–6645 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy, K.C., Campellone, K.G. & Poteete, A.R. PCR-mediated gene replacement in Escherichia coli. Gene 246, 321–330 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Yu, D. et al. An efficient recombination system for chromosome engineering in Escherichia coli. Proc. Natl. Acad. Sci. USA 97, 5978–5983 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis, H.M., Yu, D., DiTizio, T. & Court, D.L. High efficiency mutagenesis, repair and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc. Natl. Acad. Sci. USA 98, 6742–6746 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuura, M. et al. A bacterial group II intron encoding reverse transcriptase, maturase and DNA endonuclease activities: biochemical demonstration of maturase activity and insertion of new genetic information within the intron. Genes Dev. 11, 2910–2924 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payne, S.M., Niesel, D.W., Peixotto, S.S. & Lawlor, K.M. Expression of hydroxamate and phenolate siderophores by Shigella flexneri. J. Bacteriol. 155, 949–955 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai, S.P., Hartin, R.J. & Ryu, J. Transformation in restriction-deficient Salmonella typhimurium LT2. J. Gen. Microbiol. 135, 2561–2567 (1989).

    CAS  PubMed  Google Scholar 

  • Hamilton, C.M., Aldea, M., Washburn, B.K., Babitzke, P. & Kushner, S.R. New method for generating deletions and gene replacements in Escherichia coli. J. Bacteriol. 171, 4617–4622 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular cloning: a laboratory manual, Edn. 2. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; 1989).

Download references

Acknowledgements

This work was supported by NIH grant GM37949. We thank Stephanie Reeves, Shelley Payne and Rasika Harshey for Shigella and Salmonella strains and Marlene Belfort and Keith Derbyshire (Albany) for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karberg, M., Guo, H., Zhong, J. et al. Group II introns as controllable gene targeting vectors for genetic manipulation of bacteria. Nat Biotechnol 19, 1162–1167 (2001). https://doi.org/10.1038/nbt1201-1162

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1201-1162

  • Springer Nature America, Inc.

This article is cited by

Navigation