Skip to main content
Log in

A mid-life crisis for aging theory

  • News Feature
  • Published:

From Nature Biotechnology

View current issue Submit your manuscript

From yeast to mice, limiting food intake slows aging and extends lifespan. Activators of the sirtuins, enzymes famously linked to this process, promise a wealth of new drugs—but the sirtuin hypothesis is now coming under fire. Ken Garber reports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Hope or hype? A widely publicized 2006 paper reported that resveratrol, a SIRT1 activator, reduced the risk of death by 30% for mice on a high-fat diet, like the one at right.

References

  1. Tissenbaum, H.A. & Guarente, L. Nature 410, 227–230 (2001).

    Article  CAS  Google Scholar 

  2. Howitz, K.T. et al. Nature 425, 191–196 (2003).

    Article  CAS  Google Scholar 

  3. Baur, J.A. et al. Nature 444, 337–342 (2006).

    Article  CAS  Google Scholar 

  4. Kaeberlein, M. et al. J. Biol. Chem. 280, 17038–17045 (2005).

    Article  CAS  Google Scholar 

  5. Borra, M.T., Smith, B.C. & Denu, J.M. J. Biol. Chem. 280, 17187–17195 (2005).

    Article  CAS  Google Scholar 

  6. Bass, T.M., Weinkove, D., Houthoofd, K., Gems, D. & Partridge, L. Mech. Ageing Dev. 128, 546–552 (2007).

    Article  CAS  Google Scholar 

  7. Picard, F. et al. Nature 429, 771–776 (2004).

    Article  CAS  Google Scholar 

  8. Viswanathan, M., Kim, S.K., Berdichevsky, A. & Guarente, L. Dev. Cell 9, 605–615 (2005).

    Article  CAS  Google Scholar 

  9. Milne, J.C. et al. Nature 450, 712–716 (2007).

    Article  CAS  Google Scholar 

  10. Kaeberlein, M., Kirkland, K.T., Fields, S. & Kennedy, B.K. PLoS Biol. 2, E296, 1381–1387 (2004).

    Article  CAS  Google Scholar 

  11. Kaeberlein, M. et al. Science 310, 1193–1196 (2005).

    Article  CAS  Google Scholar 

  12. Bordone, L. et al. Aging Cell 6, 759–767 (2007).

    Article  CAS  Google Scholar 

  13. Fabrizio, P. et al. Cell 123, 655–667 (2005).

    Article  CAS  Google Scholar 

  14. Olshansky, S.J., Carnes, B.A. & Cassel, C. Science 250, 634–640 (1990).

    Article  CAS  Google Scholar 

  15. Outeiro, T.F. et al. Science 317, 516–519 (2007).

    Article  CAS  Google Scholar 

  16. Kim, D. et al. EMBO J. 26, 3169–3179 (2007).

    Article  CAS  Google Scholar 

  17. Parker, J.A. et al. Nat. Genet. 37, 349–350 (2005).

    Article  CAS  Google Scholar 

  18. Ashraf, N. et al. Br. J. Cancer 95, 1056–1061 (2006).

    Article  CAS  Google Scholar 

  19. Yang, Y., Hou, H., Haller, E.M., Nicosia, S.V. & Bai, W. EMBO J. 24, 1021–1032 (2005).

    Article  CAS  Google Scholar 

  20. Huffman, D.M. et al. Cancer Res. 67, 6612–6618 (2007).

    Article  CAS  Google Scholar 

  21. de Nigris, F. et al. Br. J. Cancer 86, 917–923 (2002).

    Article  CAS  Google Scholar 

  22. Inoue, T., Hiratsuka, M., Osaki, M. & Oshimura, M. Cell Cycle 6, 1011–1018 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garber, K. A mid-life crisis for aging theory. Nat Biotechnol 26, 371–374 (2008). https://doi.org/10.1038/nbt0408-371

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0408-371

  • Springer Nature America, Inc.

This article is cited by

Navigation