Skip to main content

Advertisement

Log in

Enabling personalized cancer medicine through analysis of gene-expression patterns

  • Review Article
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Therapies for patients with cancer have changed gradually over the past decade, moving away from the administration of broadly acting cytotoxic drugs towards the use of more-specific therapies that are targeted to each tumour. To facilitate this shift, tests need to be developed to identify those individuals who require therapy and those who are most likely to benefit from certain therapies. In particular, tests that predict the clinical outcome for patients on the basis of the genes expressed by their tumours are likely to increasingly affect patient management, heralding a new era of personalized medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Predicting disease outcome by using complex gene-expression tests.
Figure 2: Conventional and molecular diagnostic testing for cancer.
Figure 3: Short cuts to the development of drug-response biomarkers.

Similar content being viewed by others

References

  1. Early Breast Cancer Trialists' Collaborative Group. Polychemotherapy for early breast cancer: an overview of the randomised trials. Lancet 352, 930–942 (1998).

  2. Schena, M., Shalon, D., Davis, R. W. & Brown, P. O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Fodor, S. P., Read, J. L., Pirrung, M. C., Lu, A. T. & Solas, D. Light-directed, spatially addressable parallel chemical synthesis. Science 251, 767–773 (1991).

    Article  ADS  CAS  Google Scholar 

  4. van 't Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002).

    Article  CAS  Google Scholar 

  5. Chang, H. Y. et al. Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc. Natl Acad. Sci. USA 102, 3738–3743 (2005).

    Article  ADS  CAS  Google Scholar 

  6. Bild, A. H., Potti, A. & Nevins, J. R. Linking oncogenic pathways with therapeutic opportunities. Nature Rev. Cancer 6, 735–741 (2006).

    Article  CAS  Google Scholar 

  7. Bild, A. H. et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439, 353–357 (2006). This paper shows that the activation status of oncogenic pathways is associated with a characteristic gene-expression signature and that these signatures can be used both to determine a patient's prognosis and to predict his or her response to particular drugs.

    Article  ADS  CAS  Google Scholar 

  8. Paik, S. et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 351, 2817–2826 (2004).

    Article  CAS  Google Scholar 

  9. Quackenbush, J. Computational analysis of microarray data. Nature Rev. Genet. 2, 418–427 (2001).

    Article  CAS  Google Scholar 

  10. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  ADS  CAS  Google Scholar 

  11. Sorlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl Acad. Sci. USA 98, 10869–10874 (2001).

    Article  ADS  CAS  Google Scholar 

  12. Sorlie, T. et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl Acad. Sci. USA 100, 8418–8423 (2003).

    Article  ADS  CAS  Google Scholar 

  13. Alizadeh, A. A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000). This study shows that previously undetected and clinically significant subtypes of cancer can be identified by molecular classification of tumours on the basis of gene expression.

    Article  ADS  CAS  Google Scholar 

  14. Wang, Y. et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365, 671–679 (2005).

    Article  CAS  Google Scholar 

  15. Ein-Dor, L., Zuk, O. & Domany, E. Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proc. Natl Acad. Sci. USA 103, 5923–5928 (2006).

    Article  ADS  CAS  Google Scholar 

  16. Desmedt, C. et al. Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series. Clin. Cancer Res. 13, 3207–3214 (2007).

    Article  CAS  Google Scholar 

  17. Buyse, M. et al. Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J. Natl Cancer Inst. 98, 1183–1192 (2006).

    Article  CAS  Google Scholar 

  18. Fan, C. et al. Concordance among gene-expression-based predictors for breast cancer. N. Engl. J. Med. 355, 560–569 (2006).

    Article  CAS  Google Scholar 

  19. Yu, J. X. et al. Pathway analysis of gene signatures predicting metastasis of node-negative primary breast cancer. BMC Cancer 7, 182, doi:10.1186/1471-2407-7-182 (2007).

    Article  Google Scholar 

  20. Potti, A. et al. A genomic strategy to refine prognosis in early-stage non-small-cell lung cancer. N. Engl. J. Med. 355, 570–580 (2006).

    Article  CAS  Google Scholar 

  21. Ma, X.-J. et al. The HOXB13:IL17BR expression index is a prognostic factor in early-stage breast cancer. J. Clin. Oncol. 24, 4611–4619 (2006).

    Article  CAS  Google Scholar 

  22. Harris, L. N. et al. Predictors of resistance to preoperative trastuzumab and vinorelbine for HER2-positive early breast cancer. Clin. Cancer Res. 13, 1198–1207 (2007).

    Article  CAS  Google Scholar 

  23. Dressman, H. K. et al. Gene expression profiles of multiple breast cancer phenotypes and response to neoadjuvant chemotherapy. Clin. Cancer Res. 12, 819–826 (2006).

    Article  CAS  Google Scholar 

  24. Potti, A. et al. Genomic signatures to guide the use of chemotherapeutics. Nature Med. 12, 1294–1300 (2006).

    Article  CAS  Google Scholar 

  25. Staunton, J. E. et al. Chemosensitivity prediction by transcriptional profiling. Proc. Natl Acad. Sci. USA 98, 10787–10792 (2001).

    Article  ADS  CAS  Google Scholar 

  26. Lee, J. K. et al. A strategy for predicting the chemosensitivity of human cancers and its application to drug discovery. Proc. Natl Acad. Sci. USA 104, 13086–13091 (2007).

    Article  ADS  CAS  Google Scholar 

  27. Coombes, K. R., Wang, J. & Baggerly, K. A. Microarrays: retracing steps. Nature Med. 13, 1276–1277 (2007).

    Article  CAS  Google Scholar 

  28. Bonnefoi, H. et al. Validation of gene signatures that predict the response of breast cancer to neoadjuvant chemotherapy: a substudy of the EORTC 10994/BIG 00-01 clinical trial. Lancet Oncol. 8, 1071–1078 (2007).

    Article  CAS  Google Scholar 

  29. Neve, R. M. et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10, 515–527 (2006).

    Article  CAS  Google Scholar 

  30. Huang, E. et al. Gene expression phenotypic models that predict the activity of oncogenic pathways. Nature Genet. 34, 226–230 (2003).

    Article  CAS  Google Scholar 

  31. Saal, L. H. et al. Poor prognosis in carcinoma is associated with a gene expression signature of aberrant PTEN tumor suppressor pathway activity. Proc. Natl Acad. Sci. USA 104, 7564–7569 (2007).

    Article  ADS  CAS  Google Scholar 

  32. Hughes, T. R. et al. Functional discovery via a compendium of expression profiles. Cell 102, 109–126 (2000).

    Article  CAS  Google Scholar 

  33. Lamb, J. et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313, 1929–1935 (2006). In this study, a compendium of gene-expression profiles of cells subjected to known perturbations was used to find connections among small molecules that share a mechanism of action, between chemicals and physiological processes, and between drugs and diseases.

    Article  ADS  CAS  Google Scholar 

  34. Hieronymus, H. et al. Gene expression signature-based chemical genomic prediction identifies a novel class of HSP90 pathway modulators. Cancer Cell 10, 321–330 (2006).

    Article  CAS  Google Scholar 

  35. Wei, G. et al. Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance. Cancer Cell 10, 331–342 (2006).

    Article  CAS  Google Scholar 

  36. Vogel, C. L. et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J. Clin. Oncol. 20, 719–726 (2002).

    Article  CAS  Google Scholar 

  37. Berns, K. et al. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12, 395–402 (2007). This study used large-scale RNA-interference screens to identify oncogenic pathways that cause resistance to anticancer drugs in the clinic.

    Article  CAS  Google Scholar 

  38. Nagata, Y. et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 6, 117–127 (2004).

    Article  CAS  Google Scholar 

  39. Swanton, C. et al. Regulators of mitotic arrest and ceramide metabolism are determinants of sensitivity to paclitaxel and other chemotherapeutic drugs. Cancer Cell 11, 498–512 (2007).

    Article  CAS  Google Scholar 

  40. Whitehurst, A. W. et al. Synthetic lethal screen identification of chemosensitizer loci in cancer cells. Nature 446, 815–819 (2007).

    Article  ADS  CAS  Google Scholar 

  41. Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005).

    Article  ADS  CAS  Google Scholar 

  42. Bryant, H. E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917 (2005).

    Article  ADS  CAS  Google Scholar 

  43. Shi, L. et al. The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nature Biotechnol. 24, 1151–1161 (2006).

    Article  CAS  Google Scholar 

  44. Sparano, J. A. TAILORx: trial assigning individualized options for treatment (Rx). Clin. Breast Cancer 7, 347–350 (2006).

    Article  Google Scholar 

  45. Mook, S. et al. Individualization of therapy using MammaPrint: from development to the MINDACT Trial. Cancer Genomics Proteomics 4, 147–155 (2007).

    CAS  PubMed  Google Scholar 

  46. van de Vijver, M. J. et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347, 1999–2009 (2002).

    Article  CAS  Google Scholar 

  47. Harris, L. et al. American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J. Clin. Oncol. 25, 5287–5312 (2007).

    Article  CAS  Google Scholar 

  48. Rhodes, A. et al. Reliability of immunohistochemical demonstration of oestrogen receptors in routine practice: interlaboratory variance in the sensitivity of detection and evaluation of scoring systems. J. Clin. Pathol. 53, 125–130 (2000).

    Article  CAS  Google Scholar 

  49. Ach, R. A. et al. Robust interlaboratory reproducibility of a gene expression signature measurement consistent with the needs of a new generation of diagnostic tools. BMC Genomics 8, 148, doi:10.1186/1471-2164-8-148 (2007).

    Article  Google Scholar 

  50. Hornberger, J., Cosler, L. E. & Lyman, G. H. Economic analysis of targeting chemotherapy using a 21-gene RT-PCR assay in lymph-node-negative, estrogen-receptor-positive, early-stage breast cancer. Am. J. Manag. Care 11, 313–324 (2005).

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Wessels and P. Borst for discussions. Our work was supported by grants from the Centre for Biomedical Genetics, the Cancer Genomics Centre and the Dutch Cancer Society.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

L.J.v.V. and R.B. are employees of, and hold shares in, Agendia. Agendia markets MammaPrint, which is discussed in this review article.

Additional information

Reprints and permissions information is available at http://npg.nature.com/reprints.

Correspondence should be addressed to R.B. (r.bernards@nki.nl).

Rights and permissions

Reprints and permissions

About this article

Cite this article

van 't Veer, L., Bernards, R. Enabling personalized cancer medicine through analysis of gene-expression patterns. Nature 452, 564–570 (2008). https://doi.org/10.1038/nature06915

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06915

  • Springer Nature Limited

This article is cited by

Navigation