Skip to main content

Advertisement

Log in

Lentiviral-mediated Foxp3 RNAi suppresses tumor growth of regulatory T cell-like leukemia in a murine tumor model

  • Original Article
  • Published:
Gene Therapy Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Foxp3, a member of the forkhead transcription factor family, is a master gene that controls the development and function of CD4+CD25+ regulatory T (Treg) cells. It is thought to contribute to pathogenesis of many different tumors, including ovarian carcinoma and pancreatic, breast and pancreatic ductal adenocarcinoma. Selectively depleted Foxp3-expressing cells with anit-CD25 antibodies or vaccination of Foxp3 mRNA-transfected dendritic cells engender protective immunity against tumor. This study targeted silencing Foxp3 gene expression using RNA interference (RNAi) delivered by a lentiviral vector to evaluate the therapeutic role of Foxp3 short-hairpin RNAs (shRNAs) in a murine model of leukemia. RL♂1, a mouse CD4+CD25+ leukemia cell with Foxp3 expression, was used as the leukemia animal model. By infecting RL♂1 cells with Lenti-Foxp3-siRNA, we reduced Foxp3 gene expression and the suppressive function of CD4+CD25 effector cells stimulated with ConA. Moreover, lentiviral-mediated Foxp3 RNAi transduced into RL♂1 cell or injected into the tumor showed suppressive effects on tumor growth and prolonged the survival of tumor-transplanted mice. However, this suppressive effect was abrogated in NOD-SCID mice transplanted with Lenti-Foxp3-siRNA-infected RL♂1 cells. In conclusion, inhibiting Foxp3 gene expression by shRNAs effectively decreases tumor growth of Treg cell-like leukemia. The results may provide a novel strategy for future immunotherapy against cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Kersey JH . Fifty years of studies of the biology and therapy of childhood leukemia. Blood 1997; 90: 4243–4251.

    CAS  PubMed  Google Scholar 

  2. Hanahan D, Weinberg RA . The hallmarks of cancer. Cell 2000; 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  3. Hahn WC, Weinberg RA . Rules for making human tumor cells. N Engl J Med 2002; 347: 1593–1603.

    Article  CAS  PubMed  Google Scholar 

  4. Smith SD, Uyeki EM, Lowman JT . Colony formation in vitro by leukemic cells in acute lymphoblastic leukemia (ALL). Blood 1978; 52: 712–718.

    CAS  PubMed  Google Scholar 

  5. Smith SD, Shatsky M, Cohen PS, Warnke R, Link MP, Glader BE . Monoclonal antibody and enzymatic profiles of human malignant T-lymphoid cells and derived cell lines. Cancer Res 1984; 44 (12 Pt 1): 5657–5660.

    CAS  PubMed  Google Scholar 

  6. Lange B, Valtieri M, Santoli D, Caracciolo D, Mavilio F, Gemperlein I et al. Growth factor requirements of childhood acute leukemia: establishment of GM-CSF-dependent cell lines. Blood 1987; 70: 192–199.

    CAS  PubMed  Google Scholar 

  7. Gjerset R, Yu A, Haas M . Establishment of continuous cultures of T-cell acute lymphoblastic leukemia cells at diagnosis. Cancer Res 1990; 50: 10–14.

    CAS  PubMed  Google Scholar 

  8. Dialynas DP, Lee MJ, Gold DP, Shao Le, Yu AL, Borowitz MJ et al. Pre-conditioning with fetal cord blood facilitates engraftment of primary childhood T-cell acute lymphoblastic leukemia in immuno-deficient mice. Blood 2001; 97: 3218–3225.

    Article  CAS  PubMed  Google Scholar 

  9. Burnet FM . The concept of immunologic surveillance. Prog Exp Tumor Res 1970; 13: 1–27.

    Article  CAS  PubMed  Google Scholar 

  10. Smyth MJ, Dunn GP, Schreiber RD . Cancer immuno-surveillance and immuno-editing: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol 2006; 90: 1–50.

    Article  CAS  PubMed  Google Scholar 

  11. Bui JD, Schreiber RD . Cancer immuno-surveillance, immuno-editing and inflammation: independent or interdependent processes? Curr Opin Immunol 2007; 19: 203–208.

    Article  CAS  PubMed  Google Scholar 

  12. Sakaguchi S . Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 2005; 6: 345–352.

    Article  CAS  PubMed  Google Scholar 

  13. Wang X, Zheng J, Liu J, Yao J, He Y, Li X et al. Increased population of CD4(+)CD25(high), regulatory T cells with their higher apoptotic and proliferating status in peripheral blood of acute myeloid leukemia patients. Eur J Haematol 2005; 75: 468–476.

    Article  PubMed  Google Scholar 

  14. Nelson BH . IL-2, regulatory T cells, and tolerance. J Immunol 2004; 172: 3983–3988.

    Article  CAS  PubMed  Google Scholar 

  15. Prevosto C, Zancolli M, Canevali P, Zocchi MR, Poggi A . Generation of CD4+ or CD8+ regulatory T cells upon mesenchymal stem cell-lymphocyte interaction. Haematologica 2007; 92: 881–888.

    Article  CAS  PubMed  Google Scholar 

  16. Fontenot JD, Rudensky AY . A well-adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat Immunol 2005; 6: 331–337.

    Article  CAS  PubMed  Google Scholar 

  17. Hill JA, Feuerer M, Tash K, Haxhinasto S, Perez J, Melamed R et al. Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature. Immunity 2007; 27: 786–800.

    Article  CAS  PubMed  Google Scholar 

  18. Nik Tavakoli N, Hambly BD, Sullivan DR, Bao S . Forkhead box protein 3: essential immune regulatory role. Int J Biochem Cell Biol 2008; 40: 2369–2373.

    Article  PubMed  Google Scholar 

  19. Liyanage UK, Moore TT, Joo HG, Tanaka Y, Herrmann V, Doherty G et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 2002; 169: 2756–2761.

    Article  CAS  PubMed  Google Scholar 

  20. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004; 10: 942–949.

    Article  CAS  PubMed  Google Scholar 

  21. Hiraoka N, Onozato K, Kosuge T, Hirohashi S . Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its pre-malignant lesions. Clin Cancer Res 2006; 12: 5423–5434.

    Article  CAS  PubMed  Google Scholar 

  22. Grauer OM, Nierkens S, Bennink E, Toonen LW, Boon L, Wesseling P et al. CD4+FoxP3+ regulatory T cells gradually accumulate in gliomas during tumor growth and efficiently suppress antiglioma immune responses in vivo. Int J Cancer 2007; 121: 95–105.

    Article  CAS  PubMed  Google Scholar 

  23. Hinz S, Pagerols-Raluy L, Oberg HH, Ammerpohl O, Grüssel S, Sipos B et al. Foxp3 expression in pancreatic carcinoma cells as a novel mechanism of immune evasion in cancer. Cancer Res 2007; 67: 8344–8350.

    Article  CAS  PubMed  Google Scholar 

  24. Roncador G, Garcia JF, Garcia JF, Maestre L, Lucas E, Menarguez J et al. FOXP3, a selective marker for a subset of adult T-cell leukemia/lymphoma. Leukemia 2005; 19: 2247–2253.

    Article  CAS  PubMed  Google Scholar 

  25. Chen S, Ishii N, Ine S, Ikeda S, Fujimura T, Ndhlovu LC et al. Regulatory T cell-like activity of Foxp3+ adult T cell leukemia cells. Int Immunol 2006; 18: 269–277.

    Article  CAS  PubMed  Google Scholar 

  26. Yano H, Ishida T, Inagaki A, Ishii T, Kusumoto S, Komatsu H et al. Regulatory T-cell function of adult T-cell leukemia/lymphoma cells. Int J Cancer 2007; 120: 2052–2057.

    Article  CAS  PubMed  Google Scholar 

  27. Ono M, Yaguchi H, Ohkura N, Kitabayashi I, Nagamura Y, Nomura T et al. Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 2007; 446: 685–689.

    Article  CAS  PubMed  Google Scholar 

  28. Pandiyan P, Zheng L, Ishihara S, Reed J, Lenardo MJ . CD4(+)CD25(+)Foxp3(+) regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4(+) T cells. Nat Immunol 2007; 8: 1353–1362.

    Article  CAS  PubMed  Google Scholar 

  29. Nair S, Boczkowski D, Fassnacht M, Pisetsky D, Gilboa E . Vaccination against the forkhead family transcription factor Foxp3 enhances tumor immunity. Cancer Res 2007; 67: 371–380.

    Article  CAS  PubMed  Google Scholar 

  30. Sato H, Boyse EA, Aoki T, Iritani C, Old LJ . Leukemia-associated transplantation antigens related to murine leukemia virus. The X.1 system: immune response controlled by a locus linked to H-2. J Exp Med 1973; 138: 593–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Iwakuma T, Cui Y, Chang LJ . Self-inactivating lentiviral vectors with U3 and U5 modifications. Virology 1999; 261: 120–132.

    Article  CAS  PubMed  Google Scholar 

  32. Roush W . Anti-sense aims for a renaissance. Science 1997; 276: 1192–1193.

    Article  CAS  PubMed  Google Scholar 

  33. Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 2001; 27: 68–73.

    Article  CAS  PubMed  Google Scholar 

  34. Berger CL, Tigelaar R, Cohen J, Mariwalla K, Trinh J, Wang N et al. Cutaneous T-cell lymphoma: malignant proliferation of T-regulatory cells. Blood 2005; 105: 1640–1647.

    Article  CAS  PubMed  Google Scholar 

  35. Wu Y, Borde M, Heissmeyer V, Feuerer M, Lapan AD, Stroud JC et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 2006; 126: 375–387.

    Article  CAS  PubMed  Google Scholar 

  36. Zheng Y, Josefowicz SZ, Kas A, Chu TT, Gavin MA, Rudensky AY et al. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 2007; 445: 936–940.

    Article  CAS  PubMed  Google Scholar 

  37. Pandiyan P, Zheng L, Ishihara S, Reed J, Lenardo MJ . CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat Immunol 2007; 8: 1353–1362.

    Article  CAS  PubMed  Google Scholar 

  38. Alisky JM, Davidson BL . Towards therapy using RNA interference. Am J Pharmacogenomics 2004; 4: 45–51.

    Article  CAS  PubMed  Google Scholar 

  39. Abbas-Terki T, Blanco-Bose W, Deglon N, Pralong W, Aebischer P . Lentiviral-mediated RNA interference. Hum Gene Ther 2002; 13: 2197–2201.

    Article  CAS  PubMed  Google Scholar 

  40. Rubinson DA, Dillon CP, Kwiatkowski AV, Sievers C, Yang L, Kopinja J et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 2003; 33: 401–406.

    Article  CAS  PubMed  Google Scholar 

  41. Heller LC, Ingram SF, Lucas ML, Gilbert RA, Heller R . Effect of electrically mediated intratumor and intramuscular delivery of a plasmid encoding IFN alpha on visible B16 mouse melanomas. Technol Cancer Res Treat 2002; 1: 205–209.

    Article  CAS  PubMed  Google Scholar 

  42. Tomar RS, Matta H, Chaudhary PM . Use of adeno-associated viral vector for delivery of small interfering RNA. Oncogene 2003; 22: 5712–5715.

    Article  CAS  PubMed  Google Scholar 

  43. Maynard CL, Harrington LE, Janowski KM, Oliver JR, Zindl CL, Rudensky AY et al. Regulatory T cells expressing interleukin 10 develop from Foxp3+ and Foxp3- precursor cells in the absence of interleukin 10. Nat Immunol 2007; 8: 931–941.

    Article  CAS  PubMed  Google Scholar 

  44. Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M et al. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 2003; 21: 635–637.

    Article  CAS  PubMed  Google Scholar 

  45. Persengiev SP, Zhu X, Green MR . Non-specific, concentration-dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs). RNA 2004; 10: 12–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tomayko MM, Reynolds CP . Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother Pharmacol 1989; 24: 148–154.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B-L Chiang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, BY., Suen, JL. & Chiang, BL. Lentiviral-mediated Foxp3 RNAi suppresses tumor growth of regulatory T cell-like leukemia in a murine tumor model. Gene Ther 17, 972–979 (2010). https://doi.org/10.1038/gt.2010.38

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2010.38

  • Springer Nature Limited

Keywords

This article is cited by

Navigation