Skip to main content
Log in

A histone fold TAF octamer within the yeast TFIID transcriptional coactivator

  • Letter
  • Published:

From Nature Structural Biology

View current issue Submit your manuscript

A Correction to this article was published on 01 March 2002

Abstract

Gene activity in a eukaryotic cell is regulated by accessory factors to RNA polymerase II, which include the general transcription factor complex TFIID, composed of TBP and TBP-associated factors (TAFs). Three TAFs that contain histone fold motifs (yTAF17, yTAF60 and yTAF61) are critical for transcriptional regulation in the yeast Saccharomyces cerevisiae and are found in both TFIID and SAGA, a multicomponent histone acetyltransferase transcriptional coactivator. Although these three TAFs were proposed to assemble into a pseudooctamer complex, we find instead that yTAF17, yTAF60 and yTAF61 form a specific TAF octamer complex with a fourth TAF found in TFIID, yTAF48. We have reconstituted this complex in vitro and established that it is an octamer containing two copies each of the four components. Point mutations within the histone folds disrupt the octamer in vitro, and temperature-sensitive mutations in the histone folds can be specifically suppressed by overexpressing the other TAF octamer components in vivo. Our results indicate that the TAF octamer is similar both in stoichiometry and histone fold interactions to the histone octamer component of chromatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: The histone fold motif in histones and histone fold TAFs.
Figure 2: Formation of the yTAF61c–yTAF48 complex requires the histone fold.
Figure 3: Formation and specificity of the TAF histone fold complex.
Figure 4: TAF histone fold complex stoichiometry and yTAF48 genetic interactions.

Similar content being viewed by others

References

  1. Sterner, D.E. & Berger, S.L. Microbiol. Mol. Biol. Rev. 64, 435–459 (2000).

    Article  CAS  Google Scholar 

  2. Hampsey, M. Microbiol. Mol. Biol. Rev. 62, 465–503 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Albright, S.R. & Tjian, R. Gene 242, 1–13 (2000).

    Article  CAS  Google Scholar 

  4. Arents, G., Burlingame, R.W., Wang, B.C., Love, W.E. & Moudrianakis, E.N. Proc. Natl. Acad. Sci. USA 88, 10148–10152 (1991).

    Article  CAS  Google Scholar 

  5. Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F. & Richmond, T.J. Nature 389, 251–260 (1997).

    Article  CAS  Google Scholar 

  6. Xie, X. et al. Nature 380, 316–322 (1996).

    Article  CAS  Google Scholar 

  7. Hoffmann, A. et al. Nature 380, 356–359 (1996).

    Article  CAS  Google Scholar 

  8. Gangloff, Y.G. et al. Mol. Cell. Biol. 21, 1841–1853 (2001).

    Article  CAS  Google Scholar 

  9. Birck, C. et al. Cell 94, 239–249 (1998).

    Article  CAS  Google Scholar 

  10. Sanders, S.L. & Weil, P.A. J. Biol. Chem. 275, 13895–13900 (2000).

    Article  CAS  Google Scholar 

  11. Reese, J.C., Zhang, Z. & Kurpad, H. J. Biol. Chem. 275, 17391–17398 (2000).

    Article  CAS  Google Scholar 

  12. Gangloff, Y.G. et al. Mol. Cell. Biol. 20, 340–351 (2000).

    Article  CAS  Google Scholar 

  13. Tan, S. Protein Expr. Purif. 21, 224–234. (2001).

    Article  CAS  Google Scholar 

  14. Moqtaderi, Z., Yale, J.D., Struhl, K. & Buratowski, S. Proc. Natl. Acad. Sci. USA 93, 14654–14658 (1996).

    Article  CAS  Google Scholar 

  15. van Holde, K.E. In Chromatin (ed. Rich, A.) 162–168 (Springer-Verlag, New York; 1989).

    Book  Google Scholar 

  16. Michel, B., Komarnitsky, P. & Buratowski, S. Mol. Cell 2, 663–673 (1998).

    Article  CAS  Google Scholar 

  17. Komarnitsky, P.B., Michel, B. & Buratowski, S. Genes Dev. 13, 2484–2489 (1999).

    Article  CAS  Google Scholar 

  18. Grant, P.A. et al. Cell 94, 45–53 (1998).

    Article  CAS  Google Scholar 

  19. Horikoshi, M., Carey, M.F., Kakidani, H. & Roeder, R.G. Cell 54, 665–669. (1988).

    Article  CAS  Google Scholar 

  20. Burke, T.W. & Kadonaga, J.T. Genes Dev 11, 3020–3031. (1997).

    Article  CAS  Google Scholar 

  21. Luger, K. & Richmond, T.J. Curr. Opin. Struct. Biol. 8, 33–40 (1998).

    Article  CAS  Google Scholar 

  22. Ogryzko, V.V. et al. Cell 94, 35–44 (1998).

    Article  CAS  Google Scholar 

  23. Goodrich, J.A., Hoey, T., Thut, C.J., Admon, A. & Tjian, R. Cell 75, 519–530 (1993).

    Article  CAS  Google Scholar 

  24. Thut, C.J., Chen, J.L., Klemm, R. & Tjian, R. Science 267, 100–104 (1995).

    Article  CAS  Google Scholar 

  25. Lu, H. & Levine, A.J. Proc. Natl. Acad. Sci. USA 92, 5154–5158 (1995).

    Article  CAS  Google Scholar 

  26. Klemm, R.D., Goodrich, J.A., Zhou, S. & Tjian, R. Proc. Natl. Acad. Sci. USA 92, 5788–5792 (1995).

    Article  CAS  Google Scholar 

  27. Parks, T.D., Leuther, K.K., Howard, E.D., Johnston, S.A. & Dougherty, W.G. Anal. Biochem. 216, 413–417 (1994).

    Article  CAS  Google Scholar 

  28. Gill, S.C. & von Hippel, P.H. Anal. Biochem. 182, 319–326 (1989).

    Article  CAS  Google Scholar 

  29. McRorie, D.K. & Voelker, P.J. Self-associating systems in the analytical ultracentrifuge. (Beckman Instruments, Inc., Palo Alto; 1993).

    Google Scholar 

  30. Cohn, E.J. & Edsall, J.T. Proteins, amino acids and peptides as ions and dipolar ions (Reinhold, New York; 1943).

    Book  Google Scholar 

Download references

Acknowledgements

We thank B. Schlansky and M. Song for technical assistance; C. Brown, J. Reese, B. Simpson and J. Workman for critical reading of the manuscript, and to the gene regulation community at Penn State for stimulating discussions. We are also grateful to T. Richmond, in whose laboratory preliminary studies for this project were initiated. This work was supported by NIH grants to M.F., S.B. and S.T. S.B. is a Leukemia and Lymphoma Society Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selleck, W., Howley, R., Fang, Q. et al. A histone fold TAF octamer within the yeast TFIID transcriptional coactivator. Nat Struct Mol Biol 8, 695–700 (2001). https://doi.org/10.1038/90408

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/90408

  • Springer Nature America, Inc.

This article is cited by

Navigation