Skip to main content
Log in

Point mutations alter the mechanical stability of immunoglobulin modules

  • Letter
  • Published:

From Nature Structural Biology

View current issue Submit your manuscript

Abstract

Immunoglobulin-like modules are common components of proteins that play mechanical roles in cells such as muscle elasticity and cell adhesion. Mutations in these proteins may affect their mechanical stability and thus may compromise their function. Using single molecule atomic force microscopy (AFM) and protein engineering, we demonstrate that point mutations in two β-strands of an immunoglobulin module in human cardiac titin alter the mechanical stability of the protein, resulting in mechanical phenotypes. Our results demonstrate a previously unrecognized class of phenotypes that may be common in cell adhesion and muscle proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Point mutations in an immunoglobulin module alter its mechanical stability.
Figure 2: Magnitude and kinetics of forced unfolding of mutant proteins.
Figure 3: Refolding kinetics of the I27 polyproteins.
Figure 4: Free energy diagram for the mechanical unfolding and refolding of the I27 module and its mutants.

Similar content being viewed by others

References

  1. Erickson, H.P. Proc. Natl. Acad. Sci. USA 91, 10114–10118 (1994).

    Article  CAS  Google Scholar 

  2. Ohashi, T., Kiehart, D.P. & Erickson, H.P. Proc. Natl. Acad. Sci. USA 96, 2153–2158 (1999).

    Article  CAS  Google Scholar 

  3. Oberhauser, A.F., Marszalek, P.E., Erickson, H.P. & Fernandez, J.M. Nature 393, 181–185 (1998).

    Article  CAS  Google Scholar 

  4. Casasnovas, J.M., Stehle, T., Liu, J.H., Wang, J.H. & Springer, T.A. Proc. Natl. Acad. Sci. USA 95, 4134–4139 (1998).

    Article  CAS  Google Scholar 

  5. Rief, M., Pascual, J., Saraste, M. & Gaub, H.E. J. Mol. Biol. 286, 553–541 (1999).

    Article  CAS  Google Scholar 

  6. Labeit, S. & Kolmerer, B. Science 270, 293–296 (1995).

    Article  CAS  Google Scholar 

  7. Linke, W.A. et al. J. Cell Biol. 146, 631–644 (1999).

    Article  CAS  Google Scholar 

  8. Trombitas, K.M. et al. J. Cell Biol. 140, 853–859 (1998).

    Article  CAS  Google Scholar 

  9. Chothia, C. & Jones, E.Y. Annu. Rev. Biochem. 66, 823–862 (1997).

    Article  CAS  Google Scholar 

  10. Bateman, A. et al. EMBO J. 15, 6050–6059 (1996).

    Article  CAS  Google Scholar 

  11. Kenwrick, J.J. In Ig superfamily molecules in the nervous system. (ed., Sonderegger, P.) 287–303 (Harwood, Amsterdam; 1998).

    Google Scholar 

  12. Carrion-Vazquez, M. et al. Proc. Natl. Acad. Sci. USA 96, 3694–3699 (1999).

    Article  CAS  Google Scholar 

  13. Carrion-Vazquez, M., Marszalek, P.E., Oberhauser, A.F. & Fernandez, J.M. Proc. Natl. Acad. Sci. USA 96, 11288–11292 (1999).

    Article  CAS  Google Scholar 

  14. Oberhauser, A.F., Marszalek, P.E., Carrion-Vazquez, M. & Fernandez, J.M. Nature Struct. Biol. 6, 1025–1028 (1999).

    Article  CAS  Google Scholar 

  15. Li, H.B., Oberhauser, A.F., Fowler, S.B., Clarke, J. & Fernandez, J.M. Proc. Natl. Acad. Sci. USA 97, 6527–6531 (2000).

    Article  CAS  Google Scholar 

  16. Marszalek, P.E. et al. Nature 402, 100–103 (1999).

    Article  CAS  Google Scholar 

  17. Improta, S., Politou, A.S. & Pastore, A. Structure 4, 323–337 (1996).

    Article  CAS  Google Scholar 

  18. Lu, H., Isralewitz, B., Krammer, A., Vogel, V. & Schulten, K. Biophys. J. 75, 662–671 (1998).

    Article  CAS  Google Scholar 

  19. Lu, H. & Schulten, K. Biophys. J. 79, 51–65 (2000).

    Article  CAS  Google Scholar 

  20. Paci, E. & Karplus, M. Proc. Natl. Acad. Sci. USA 97, 6521–6526 (2000).

    Article  CAS  Google Scholar 

  21. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J.M. & Gaub, H.E. Science 276, 1109–1112 (1997)

    Article  CAS  Google Scholar 

  22. Wood, S.J., Wetzel, R., Martin, J.D. & Hurle, M.R. Biochemistry 34, 724–730 (1995).

    Article  CAS  Google Scholar 

  23. Rief, M., Fernandez, J.M. & Gaub H.E. Phys. Rev. Lett., 81, 4764–4767 (1998)

    Article  CAS  Google Scholar 

  24. Kellermayer, M., Smith, S., Granzier, H. & Bustamante, C. Science 276, 1112–1116 (1997).

    Article  CAS  Google Scholar 

  25. Tskhovrebova, L., Trinick, J., Sleep, J.A. & Simmons, R.M. Nature 387, 308–312 (1997).

    Article  CAS  Google Scholar 

  26. Hutter, J.L. & Bechhoffer, J. Rev. Sci. Instrum. 64, 1868–1873 (1993).

    Article  CAS  Google Scholar 

  27. Florin, E.L. et al. Biosens. Bioelectr. 10, 895–901 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Badilla-Fernandez and J. Kerkvliet for their help in polyprotein engineering. This work was supported by National Institute of Health grants to J.M.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio M. Fernandez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Carrion-Vazquez, M., Oberhauser, A. et al. Point mutations alter the mechanical stability of immunoglobulin modules. Nat Struct Mol Biol 7, 1117–1120 (2000). https://doi.org/10.1038/81964

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/81964

  • Springer Nature America, Inc.

This article is cited by

Navigation