Skip to main content

Advertisement

Log in

A T-cell-selective interleukin 2 mutein exhibits potent antitumor activity and is well tolerated in vivo

  • Article
  • Published:

From Nature Biotechnology

View current issue Submit your manuscript

A Corrigendum to this article was published on 01 December 2000

Abstract

Human interleukin 2 (IL-2; Proleukin) is an approved therapeutic for advanced-stage metastatic cancer; however, its use is restricted because of severe systemic toxicity. Its function as a central mediator of T-cell activation may contribute to its efficacy for cancer therapy. However, activation of natural killer (NK) cells by therapeutically administered IL-2 may mediate toxicity. Here we have used targeted mutagenesis of human IL-2 to generate a mutein with ∼3,000-fold in vitro selectivity for T cells over NK cells relative to wild-type IL-2. We compared the variant, termed BAY 50-4798, with human IL-2 (Proleukin) in a therapeutic dosing regimen in chimpanzees, and found that although the T-cell mobilization and activation properties of BAY 50-4798 were comparable to human IL-2, BAY 50-4798 was better tolerated in the chimpanzee. BAY 50-4798 was also shown to inhibit metastasis in a mouse tumor model. These results indicate that BAY 50-4798 may exhibit a greater therapeutic index than IL-2 in humans in the treatment of cancer and AIDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Structural representation of IL-2 and hypothesis for receptor.
Figure 2: In vitro activity of BAY 50-4798.
Figure 3: Renal and hepatic function of treated chimpanzees.
Figure 4: FACS analysis of cells from BAY 50-4798- and Proleukin-treated chimpanzee blood.
Figure 5: Effects of BAY 50-4798 and Proleukin on hematological parameters of treated chimpanzees.
Figure 6: BAY 50-4798 and Proleukin treatment of B16 lung metastasis-bearing mice.

Similar content being viewed by others

References

  1. Fyfe, G. et al. Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. J. Clin. Oncol. 13, 688–696 ( 1995).

    Article  CAS  Google Scholar 

  2. Atkins, M.B. et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J. Clin. Oncol. 17, 2105–2116 (1999).

    Article  CAS  Google Scholar 

  3. Atkins, M.B. et al. Phase I evaluation of recombinant interleukin-2 in patients with advanced malignant disease. J. Clin. Oncol. 4, 1380–1391 (1986).

    Article  CAS  Google Scholar 

  4. Nasr, S. et al. A phase I study of interleukin-2 in children with cancer and evaluation of clinical and immunologic status during therapy. A Pediatric Oncology Group Study. Cancer 64, 783–788 (1989).

    Article  CAS  Google Scholar 

  5. von der Maase, H. et al. Recombinant interleukin-2 in metastatic renal cell carcinoma–a European multicentre phase II study. Eur. J. Cancer 27, 1583–1589 (1991).

    Article  CAS  Google Scholar 

  6. Wiltrout, R.H. et al. Flavone-8-acetic acid augments systemic natural killer cell activity and synergizes with IL-2 for treatment of murine renal cancer. J. Immunol. 140, 3261–3265 (1988).

    CAS  PubMed  Google Scholar 

  7. Anderson, T.D. et al. Toxicity of human recombinant interleukin-2 in the mouse is mediated by interleukin-activated lymphocytes. Separation of efficacy and toxicity by selective lymphocyte subset depletion. Lab. Invest. 59, 598–612 (1988).

    CAS  PubMed  Google Scholar 

  8. Koretz, M.J. et al. Randomized study of interleukin 2 (IL-2) alone vs IL-2 plus lymphokine-activated killer cells for treatment of melanoma and renal cell cancer. Arch. Surg. 126, 898–903 (1991).

    Article  CAS  Google Scholar 

  9. Hermann, G.G. et al. Recombinant interleukin-2 and lymphokine-activated killer cell treatment of advanced bladder cancer: clinical results and immunological effects. Cancer Res. 52, 726–733 (1992).

    CAS  PubMed  Google Scholar 

  10. Smith, K.A. Lowest dose interleukin-2 immunotherapy. Blood 81, 1414–1423 (1993).

    CAS  PubMed  Google Scholar 

  11. Siegel, J.P., Sharon, M., Smith, P.L. & Leonard, W.J. The IL-2 receptor beta chain (p70): role in mediating signals for LAK, NK, and proliferative activities. Science 238, 75– 78 (1987).

    Article  CAS  Google Scholar 

  12. Voss, S.D., Sondel, P.M. & Robb, R.J. Characterization of the interleukin 2 receptors (IL-2R) expressed on human natural killer cells activated in vivo by IL-2: association of the p64 IL-2R gamma chain with the IL-2R beta chain in functional intermediate-affinity IL-2R. J. Exp. Med. 176, 531– 541 (1992).

    Article  CAS  Google Scholar 

  13. Caligiuri, M.A. et al. Extended continuous infusion low-dose recombinant interleukin-2 in advanced cancer: prolonged immunomodulation without significant toxicity . J. Clin. Oncol. 9, 2110– 2119 (1991).

    Article  CAS  Google Scholar 

  14. Stein, R.C. et al. The clinical effects of prolonged treatment of patients with advanced cancer with low-dose subcutaneous interleukin-2. Br. J. Cancer 63, 275–278 ( 1991). (Published erratum appears in Br. J. Cancer 63 , 1029, 1991).

    Article  CAS  Google Scholar 

  15. Peest, D. et al. Low-dose recombinant interleukin-2 therapy in advanced multiple myeloma. Br. J. Haematol. 89, 328–337 (1995).

    Article  CAS  Google Scholar 

  16. Jacobson, E.L., Pilaro, F. & Smith, K.A. Rational interleukin 2 therapy for HIV positive individuals: daily low doses enhance immune function without toxicity . Proc. Natl. Acad. Sci. USA 93, 10405– 10410 (1996).

    Article  CAS  Google Scholar 

  17. Bazan, J.F. Unraveling the structure of IL-2. Science 257, 410–413 (1992).

    Article  CAS  Google Scholar 

  18. Mckay, D.B. Unraveling the structure of interleukin-2: reply. Science 257, 412 (1992).

    Article  CAS  Google Scholar 

  19. Thèze, J., Alzari, P.M. & Bertoglio, J. Interleukin 2 and its receptors: recent advances and new immunological functions. Immunol. Today 17, 481–486 (1996).

    Article  Google Scholar 

  20. Espinoza-Delgado, I., Longo, D.L., Gusella, G.L. & Varesio, L. Regulation of IL-2 receptor subunit genes in human monocytes. Differential effects of IL-2 and IFN-gamma. J. Immunol. 149, 2961–2968 (1992).

    CAS  PubMed  Google Scholar 

  21. Collins, L. et al. Identification of specific residues of human interleukin 2 that affect binding to the 70-kDa subunit (p70) of the interleukin 2 receptor. Proc. Natl. Acad. Sci. USA 85, 7709– 7713 (1988).

    Article  CAS  Google Scholar 

  22. Buchli, P. & Ciardelli, T. Structural and biologic properties of a human aspartic acid-126 interleukin-2 analog. Arch. Biochem. Biophys. 307, 411–415 (1993).

    Article  CAS  Google Scholar 

  23. Xu, D. et al. Biological and receptor-binding activities of human interleukin-2 mutated at residues 20Asp, 125Cys or 127Ser. Eur. Cytokine Netw. 6, 237–244 (1995).

    CAS  PubMed  Google Scholar 

  24. Eckenberg, R. et al. Analysis of human IL-2/IL-2 receptor beta chain interactions: monoclonal antibody H2-8 and new IL-2 mutants define the critical role of alpha helix-A of IL-2. Cytokine 9, 488– 498 (1997).

    Article  CAS  Google Scholar 

  25. Zurawski, S.M. et al. Definition and spatial location of mouse interleukin-2 residues that interact with its heterotrimeric receptor. EMBO J. 12, 5113–5119 (1993).

    Article  CAS  Google Scholar 

  26. Linked Reaction Test, in BIACORE 2000 Control Software 3.0 (Biacore AB, Uppsala, Sweden; 1998).

  27. Allouche, M. et al. Interleukin 2 receptors. Leuk. Res. 14, 699–703 (1990).

    Article  CAS  Google Scholar 

  28. Carson, W.E., Fehniger, T.A. & Caligiuri, M.A. CD56bright natural killer cell subsets: characterization of distinct functional responses to interleukin-2 and the c-kit ligand. Eur. J. Immunol. 27, 354–360 (1997).

    Article  CAS  Google Scholar 

  29. Voss, S.D. et al. Increased expression of the interleukin 2 (IL-2) receptor beta chain (p70) on CD56+ natural killer cells after in vivo IL-2 therapy: p70 expression does not alone predict the level of intermediate affinity IL-2 binding. J. Exp. Med. 172, 1101– 1114 (1990).

    Article  CAS  Google Scholar 

  30. Zambello, R. et al. Independent expression of p55 and p75 interleukin-2 receptors (IL-2R) during intravenous or subcutaneous administration of recombinant interleukin-2 (rIL-2) by T-lymphocytes and natural killer cells. Cancer 74, 2562–2569 (1994).

    Article  CAS  Google Scholar 

  31. Rosenberg, S.A., Mule, J.J., Spiess, P.J., Reichert, C.M. & Schwarz, S.L. Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin 2. J. Exp. Med. 161, 1169–1188 (1985).

    Article  CAS  Google Scholar 

  32. Bronte, V. et al. IL-2 enhances the function of recombinant poxvirus-based vaccines in the treatment of established pulmonary metastases. J. Immunol. 154 , 5282–5292 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hancock, B.W. & Rees, R.C. Interleukin-2 and cancer therapy. Cancer Cells 2, 29– 32 (1990).

    CAS  PubMed  Google Scholar 

  34. Chun, T.-W. et al. Effect of interleukin-2 on the pool of latently infected, resting CD4+ T cells in HIV-1-infected patients receiving highly active anti-retroviral therapy. Nat. Med. 5, 651 –655 (1999).

    Article  CAS  Google Scholar 

  35. Kunkel, T.A., Roberts, J.D. & Zakour, R.A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol 154, 367–382 (1987).

    Article  CAS  Google Scholar 

  36. Myszka, D.G. & Morton, T.A. CLAMP: a biosensor kinetic data analysis program. Trends Biochem. Sci. 23, 149–150 (1998).

    Article  CAS  Google Scholar 

  37. Weir, M.P., Chaplin, M.A., Wallace, D.M., Dykes, C.W. & Hobden, A.N. Structure–activity relationships of recombinant human interleukin 2. Biochemistry 27, 6883–6892 ( 1988).

    Article  CAS  Google Scholar 

  38. Sauve, K. et al. Localization in human interleukin 2 of the binding site to the alpha chain (p55) of the interleukin 2 receptor. Proc. Natl. Acad. Sci. USA 88, 4636–4640 ( 1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge the analytical and technical assistance of the process development and fermentation groups of Bayer Biotechnology, the technical contributions of C. Meugge, U. Minocha, and L.M. Yang (research, biotechnology), H. Apeler, J. Peters, and K-H. Schneider (Bayer AG), C. Pan for molecular modeling of BAY 50-4798, T. Reynolds, M. Eckart, and J. Murphy for review and comments, and the guidance and support of T. Terrell and R. Zimmerman.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armen B. Shanafelt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shanafelt, A., Lin, Y., Shanafelt, MC. et al. A T-cell-selective interleukin 2 mutein exhibits potent antitumor activity and is well tolerated in vivo. Nat Biotechnol 18, 1197–1202 (2000). https://doi.org/10.1038/81199

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/81199

  • Springer Nature America, Inc.

This article is cited by

Navigation