Skip to main content
Log in

Structure of the Elk-1–DNA complex reveals how DNA-distal residues affect ETS domain recognition of DNA

  • Letter
  • Published:

From Nature Structural Biology

View current issue Submit your manuscript

Abstract

SAP-1 and Elk-1 are members of a large group of eukaryotic transcription factors that contain a conserved ETS DNA binding domain and that cooperate with the serum response factor (SRF) to activate transcription of the c-fos protooncogene. Despite the high degree of sequence similarity, which includes an identical amino acid sequence for the DNA recognition helix within the ETS domain of these proteins, they exhibit different DNA binding properties. Here we report the 2.1 Å crystal structure of the ETS domain of Elk-1 bound to a high affinity E74 DNA (E74DNA) site and compare it to a SAP-1–E74DNA complex. This comparison reveals that the differential DNA binding properties of these proteins are mediated by non-conserved residues distal to the DNA binding surface that function to orient conserved residues in the DNA recognition helix for protein-specific DNA contacts. As a result, nearly one-third of the interactions between the protein recognition helix and the DNA are different between the SAP-1 and Elk-1 DNA complexes. Taken together, these studies reveal a novel mechanism for the modulation of DNA binding specificity within a conserved DNA binding domain, and have implications for how highly homologous ETS proteins exhibit differential DNA-binding properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: The Elk-1 ETS domain, its DNA target site and protein–DNA interactions.
Figure 2: Overall structure of the Elk-1–E74DNA complex.
Figure 3: Comparison of protein–DNA contacts between Elk-1 and SAP-1.
Figure 4: Indirect effects of Asp 38 and Asp 69 on DNA recognition by Elk-1.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Sharrocks, A.D., Brown, A.L., Ling, Y. & Yates, P.R. Int. J. of Biochem. Cell Biol. 29, 1371–1387 (1997).

    Article  CAS  Google Scholar 

  2. Dittmer, J. & Nordheim, A. Biochim. Biophys. Acta Rev. Cancer 1377, F1–F11 (1998).

    Article  CAS  Google Scholar 

  3. Graves, B.J. & Petersen, J.M. In Advances in Cancer Research (Woude, G.v.d. & Klein, G., eds., Academic Press, San Diego), 1–55 (1998).

  4. Yang, S.H., Yates, P.R., Mo, Y. & Sharrocks, A.D. Gene Ther. Mol. Biol. 3, 355–371 (1998).

    Google Scholar 

  5. Shore, P. & Sharrocks, A.D. Eur. J. Biochem. 229, 1–13 (1995).

    Article  CAS  Google Scholar 

  6. Shore, P. & Sharrocks, A.D. Nucleic Acids Res. 23, 4698–4706 (1995).

    Article  CAS  Google Scholar 

  7. Shore, P. et al. Mol. Cell. Biol. 16, 3338–3349 (1996).

    Article  CAS  Google Scholar 

  8. Mo, Y., Vaessen, B., Johnston, K. & Marmorstein, R. Mol. Cell 2, 201–212 (1998).

    Article  CAS  Google Scholar 

  9. Brennan, R.G. Cell 74, 773–776 (1993).

    Article  CAS  Google Scholar 

  10. Werner, M.H. et al. J. Biomol. NMR 10, 317–328 (1997).

    Article  CAS  Google Scholar 

  11. Kodandapani, R. et al. Nature 380, 456–460 (1996).

    Article  CAS  Google Scholar 

  12. Batchelor, A.H., Piper, D.E., de la Brousse, F.C., Mcknight, S.L. & Wolberger, C. Science 279, 1037–1041 (1998).

    Article  CAS  Google Scholar 

  13. Donaldson, L.W., Petersen, J.M., Graves, B.J. & McIntosh, L.P. EMBO J. 15, 125–134 (1996).

    Article  CAS  Google Scholar 

  14. Aggarwal, A.K. Methods Enzymol . 1, 83–90 (1990).

    Article  CAS  Google Scholar 

  15. Otwinowski, Z. In Proceedings of the CCP4 Study Weekend: Data collection and Processing. (Sawyer, L., Isaacs, N. & Bailey, S., eds., SERC Daresbury Laboratory, Warrington, UK), 56–62 (1993).

  16. Navaza, J. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  17. Brunger, A.T. X-PLOR 3.1: a system for X-ray crystallography and NMR. (Yale University Press, New Haven, Connecticut; 1992).

    Google Scholar 

  18. Brunger, A.T. Nature 335, 472–474 (1992).

    Article  Google Scholar 

  19. Jones, T.A., Zou, J.Y. & Cowen, S.W. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  20. Brunger, A.T. & Krukowski, A. Acta Crystallogr. A 46, 585–593 (1990).

    Article  Google Scholar 

  21. Rice, L.M. & Brunger, A.T. Proteins 19, 277–290 (1994).

    Article  CAS  Google Scholar 

  22. Kleywegt, G.J. & Jones, T.A. Acta Crystallogr. D 52, 829–832 (1996).

  23. Laskowski, R.A., MacArthur, M.A., Moss, D.S. & Thornton, J.M. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  24. Jiang, J.S. & Brunger, A.T. J. Mol. Biol. 243, 100–115 (1994).

    Article  CAS  Google Scholar 

  25. Brunger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

  26. Hutchinson, E.G. & Thornton, J.M. Protein Sci. 5, 212–220 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Treisman (Imperial Cancer Research Fund) for providing the pElk-1 plasmid, and R. Venkataramani, X. Li and R. Trievel for collecting data at NSLS and useful discussions. This work was supported by a grant from NIH and ACS to R.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronen Marmorstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mo, Y., Vaessen, B., Johnston, K. et al. Structure of the Elk-1–DNA complex reveals how DNA-distal residues affect ETS domain recognition of DNA. Nat Struct Mol Biol 7, 292–297 (2000). https://doi.org/10.1038/74055

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/74055

  • Springer Nature America, Inc.

This article is cited by

Navigation